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Abstract

Can computers process human languages? During the last fifty years, two
main approaches have been used to find an answer to this question: data-
driven (i.e. statistics based) and knowledge-driven (i.e. grammar based).
The former relies on the availability of a vast amount of electronic linguistic
data and the processing capabilities of modern-age computers, while the
latter builds on grammatical rules and classical linguistic theories of language.

In this thesis, we use mainly the second approach and elucidate the de-
velopment of computational (”resource”) grammars for six Indo-Iranian lan-
guages: Urdu, Hindi, Punjabi, Persian, Sindhi, and Nepali. We explore
different lexical and syntactical aspects of these languages and build their
resource grammars using the Grammatical Framework (GF) — a type theo-
retical grammar formalism tool.

We also provide computational evidence of the similarities/differences
between Hindi and Urdu, and report a mechanical development of a Hindi
resource grammar starting from an Urdu resource grammar. We use a func-
tor style implementation that makes it possible to share the commonalities
between the two languages. Our analysis shows that this sharing is possible
upto 94% at the syntax level, whereas at the lexical level Hindi and Urdu
differed in 18% of the basic words, in 31% of tourist phrases, and in 92% of
school mathematics terms.

Next, we describe the development of wide-coverage morphological lexi-
cons for some of the Indo-Iranian languages. We use existing linguistic data
from different resources (i.e. dictionaries and WordNets) to build uni-sense
and multi-sense lexicons.

Finally, we demonstrate how we used the reported grammatical and lex-
ical resources to add support for Indo-Iranian languages in a few existing
GF application grammars. These include the Phrasebook, the mathematics
grammar library, and the Attempto controlled English grammar. Further, we
give the experimental results of developing a wide-coverage grammar based
arbitrary text translator using these resources. These applications show the
importance of such linguistic resources, and open new doors for future re-
search on these languages.
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Chapter 1

Introduction

In this introductory chapter, we start with a general overview of the field,
and continue to give a detailed introduction of the Grammatical Framework
(GF). This is followed by a brief description of the Indo-Iranian languages
and their computational resources. Major motivations behind this study and
a short summary of the main contributions together with the organization
of the thesis conclude the chapter. The discussion in this chapter is largely
based on the GF book [Ranta, 2011] and other publications on GF including
[Ranta, 2004], [Ranta, 2009a], and [Ranta, 2009b].



1.1 Background

The history of language study dates back to Iron Age India, when Yaska (6%
¢ BC) and Panini (4™ ¢ BC) made the first recorded attempts to develop
systematic grammars (i.e. a set of rules of a language). However, the field
of computational linguistics (i.e. using computers to perform language en-
gineering) is very young. It can be traced back to the mid of 1940’s, when
Donald Booth and D.V.H Britten (1947) produced a detailed code for re-
alizing dictionary translation on a digital computer. Machine Translation
was the first computer-based application related to natural language pro-
cessing (NLP). In the early days of machine translation, it was believed that
the differences among languages are only at the levels of vocabulary and
word order. This resulted in poor translations produced by the early ma-
chine translation systems. These systems were based on a dictionary-lookup
approach without considering lexical, syntactic, and semantic ambiguities
inherent in languages. In 1957, when Chomsky introduced the idea of gen-
erative grammars in his book titled Syntactic Structures [Chomsky, 1957],
the NLP community got a better insight of the field. Many modern the-
ories, e.g. Relational Grammar [Blake, 1990], Generalized Phrase Struc-
ture Grammar (GPSG) [Gazdar et al., 1985], Head Driven Phrase Struc-
ture Grammar (HPSG) [Carl and Ivan, 1994], and Lexical Functional Gram-
mar (LFG) [Dalrymple, 2001, find their origin in the generative grammar
school of thought. Historically, a number of tools and/or programming lan-
guages have been designed to implement these theories practically. Exam-
ples include the practical categorical grammar formalism: LexGram [Kéning,
1995], a special purpose programming language for grammar writing: NL-
YACC [Ishii et al., 1994], and Lexical Knowledge Builder system for HPSG
[Copestake, 2002]. The work reported in this thesis uses the Grammatical
Framework (GF) [Ranta, 2004, Ranta, 2011] as a development tool.

1.2 Grammatical Framework (GF)

GF is a type theoretical grammar formalism, which is based on Martin-Lof’s
type theory [Martin-Lof, 1982]. Linguistically, GF grammars are close to
Montague grammars [Montague, 1974]. In Montague’s opinion, there is no
important theoretical difference between natural languages and formal lan-
guages, such as programming languages, and both can be treated equally.
This means that in his view, it is possible to formalize natural languages
in the same way as formal languages. GF was started in the early 1990’s

with the objective to build an integrated formalization of natural language



syntax and semantics [Ranta, 2011]. It can be viewed as a special pur-
pose functional programming language designed for writing natural language
grammars and applications [Ranta, 2004]. It combines modern functional-
programming concepts (e.g. abstraction and higher order functions) with
useful programming-language features (e.g. static type system, module sys-
tem, and the availability of libraries).

1.2.1 Types of Grammars in GF

Natural languages are highly complex and ambiguous, which makes it very
hard to engineer them precisely for computational purposes. There are many
low-level morphological and grammatical details, such as inflection, word-
order, agreement etc. that need to be considered. This is a hard task,
especially for those who do not possess enough expertise both on the linguistic
and the computational side. Such complexities cannot be reduced (because
they are naturally there), but they can be hidden under the umbrella of
software libraries.

Ambiguity next. Consider the sentence 'He went to the bank’. There are
ten senses of the word bank as a noun in the Princeton WordNet [Miller, 1995].
If not more, there are at least two possible interpretations of the above given
sentence (1) either he went to the (bank as a sloping land) or (2) he went to
the (bank as a financial institution). In general, ambiguities are very difficult
to resolve, but many of the lexical ambiguities can be resolved by domain
specificity. For example, if we know that we are in a financial domain, it
becomes easy to interpret that most probably he went to the (bank as a
financial institution).

GF tries to address the challenges of both complexity and ambiguity
by providing two types of grammars: resource grammars and application
grammars.

Resource Grammars

Resource grammars are general-purpose grammars that encode general gram-
matical rules of a natural language [Ranta, 2009h] at both morphological and
syntactical levels. These grammars are supposed to be written by linguists,
who know better the grammatical rules (e.g. agreement, word order, etc.)
of the language. These grammars are then distributed to application de-
velopers, in the form of libraries, who can access them through a common
resource grammar API, and use them to develop domain-specific application
grammars. This approach assists the application developers and provides a
way to deal with the complexities of natural languages.



Application Grammars

Application grammars are domain-specific grammars that encode domain-
specific constructions. These grammars are supposed to be written by do-
main experts, who are familiar with domain terminologies. Since the scope
of these grammars is limited to a particular domain, and normally they have
clearly defined semantics, it becomes easier to handle the lexical and syntac-
tical ambiguities.

1.2.2 GF Resource Grammar Library

The GF resource grammar library (RGL)[Ranta, 2009h] is a set of parallel
resource grammars. It is a key component of GF and currently consists of
libraries of 26 natural languages. In principle, RGL is similar to the stan-
dard software libraries that are provided with many modern programming
languages like C, C++4, Java, Haskell, etc. The objective of both is the same,
and that is to assist the application developers. Consider the following ex-
ample to see how the availability of RGL can simplify the task of writing
application grammars.

Suppose an application developer wants to build the complex noun black
car from the adjective black and the common noun car. One possibility for
the developer is to write a function that takes an adjective and a common
noun (i.e. black and car in this case) as inputs and produces a complex
noun (i.e. black car) as output. The function needs to take care of se-
lecting appropriate inflectional forms of the words. As English adjectives do
not inflect for number, gender, etc., selecting appropriate forms may appear
to be straightforward (i.e. same form of an adjective is attached to a com-
mon noun irrespective of number, gender, and case of the common noun).
However, the picture becomes more complicated for the languages with rich
morphology like Urdu. In Urdu adjectives inflect for number, gender and
case [Shafqat et al., 2010]. So, the function should take care of selecting the
appropriate form of an adjective agreeing with number, gender, and case of
the common noun. Additionally, other grammatical details such as word
order should also be in accordance.

An alternative approach is to encapsulate all such linguistic details in a
pre-defined function and provide it as a library function. Later, the appli-
cation grammar developer can use this function with ease. As an example,
with the availability of library functions the above task to build the complex
noun can easily be achieved by the following single line of the code:

For English:
mkCN (mkA "black") (mkN "car")



For Urdu:
mkCN (mkA "¥K") (mkN ",K")

For English, the API function mkN takes the string argument car and builds
the noun car. Similarly, the API function mkA builds an adjective from its
string argument black. Finally, mkCN function builds the final adjectival
modified complex noun from the adjective black and the noun car. In
this approach, the application developer, only, has to learn how to use the
API functions (i.e. mkCN, mkN, and mkA), and let these functions deal
with the low-level linguistic details. This helps the application developer to
concentrate on the problem at hand rather than concentrating on low level
linguistic issues.

Historically, GF and its resource library have been used to develop a num-
ber of multilingual and/or monolingual application grammars including but
not limited to the Phrasebook [Ranta et al., 2012], WebAlt [Caprotti, 2006],
GF-Key [Johannisson, 2005]. Even though the idea of providing resource
grammars as libraries is new in GF, there exist other resource grammar
packages. For example the multilingual resource-grammar package of CLE
(Core Language Engine, [Rayner et al., 2000]), Pargram [Butt et al., 2002]

and LinGo Matrix [Bender and Flickinger, 2005].

1.2.3 Multilingualism

A distinguishing feature of GF grammars is multilingualism. GF grammars
maintain Haskell Curry’s distinction between tectogrammatical (abstract)
and phenogrammatical (concrete) structures [Curry, 1961]. This makes it
possible to have multiple parallel concrete syntaxes for a common abstract
syntax, which results in multilingual grammars. The abstract and concrete
syntax are two levels of GF grammars explained in the following subsections.

Abstract Syntax

An abstract syntax is a logical representation of a grammar. It is common
to a set of languages, and is based on the fact that the same categories
(e.g. mnouns, verbs, adjectives) and the same syntactical rules (e.g. predi-
cation, modification) may appear in many languages [Ranta, 2009b]. This
commonality is captured in the abstract syntax, which abstracts away from
the complexities (i.e. word order, agreement, etc.) involved in language
grammars leaving them to the concrete syntax.



Concrete Syntax

A concrete syntax describes the actual surface form of the common abstract
syntax in a particular natural language. It is language dependent, and all
the complexities involved in a particular language are handled in this part.
This is demonstrated practically in the next section.

1.2.4 A Complete Example

We give a small multilingual grammar for generating remarks like "tasty food’,
'bad service’, ’good environment’ etc. about a hotel. These kinds of remarks
can be found on hotel web-pages and blogs. Even though this example is not
grammatically very rich, it is good enough to serve our purposes of showing:

o How the idea of a common abstract syntax and multiple parallel con-
crete syntaxes works in GF.

o« How we can deal with the language specific details in the concrete
syntax.

« How the abstract syntax abstracts away from the complexities involved
in a language leaving them to the concrete syntax.

Further, it is also important to mention that neither the resource grammars
nor the resource grammar library API functions have been used to implement
the example grammar. One purpose of building it from scratch is to show
how the actual resource grammars have been build.

The grammar has one common abstract syntax and four parallel concrete
syntaxs (one for each of English, Urdu, Persian, and Hindi). The abstract
syntax is given below:

abstract Remarks = {
cat
Item, Quality, Remark ;
fun
good : Quality ;
bad : Quality ;
tasty : Quality ;
fresh : Quality ;
food : Item ;
service : Item ;



environment : Item ;
mkRemark : Quality -> Item -> Remark ;

};

The abstract syntax contains a list of categories (declared by the keyword
cat in the above given GF code) and a list of grammatical functions (declared
by the keyword fun). In this example, we have three different categories. We
name them Item, Quality and Remark. One can say that Item and Quality
are lexical categories, and Remark is a syntactical category (as it is grammat-
ically constructed from other categories). Next, the abstract syntax has a list
of grammatical functions (e.g. 'good’; ’bad’, 'tasty’). These functions either
declare the words as constants of particular lexical categories, or define how
different syntactical categories can be constructed from the lexical categories
(e.g. definition of 'mkRemark’ in the given code). Next, we give the concrete
syntaxes.

English Concrete Syntax

A concrete syntax assigns a linearization type (declared by the keyword
lincat in the code given below) to each category and a linearization function
(declared by the keyword 1in) to each function.

concrete RemarksEng of Remarks = {
lincat
Quality, Item, Remark = {s : Str } ;
lin
good = {s = "good" } ;
bad = {s = "bad" } ;

tasty = {s = "tasty" } ;

fresh = {s = "fresh" } ;

food = {s = "food" } ;

service = {s = "service" } ;
environment = {s = "environment" } ;

mkRemark quality item = {s = quality.s ++ item.s } ;

};

The category linearization rule states that all three categories (i.e. Quality,
Item, and Remark) are of the record-type (indicated by curly brackets). This
record has one field labeled as ’s’, which is of the string type. The function
linearization rules assign the actual surface form to each function. In the
above code, each function of the type Quality or Item simply gets the actual
string representation, while Remarks are constructed by concatenating the



corresponding constituent strings (see the mkRemark function in the above
code).

Urdu Concrete Syntax

Here, the picture becomes a bit more complicated because the category
Quality inflects for Gender. So, a simple string type structure is not enough
to store all inflectional forms of the category Quality. We need a richer
structure — such as a table type structure. Consider the following code to
see how this is achieved in GF. Note the IPA (International Phonetics Asso-
ciation) representations of the strings are preceded by ’- -’, which is used to
insert comments in the GF code.

concrete RemarksUrd of Remarks = {
flags

coding = utf8;

Param Gender = Masc | Fem ;

lincat

Quality = {s : Gender => Str} ;
Item = {s : Str ; g : Gender} ;
Remark = {s : Str } ;

lin
good = { s = table {Masc => " layl "; -- accta:

Fem => ",aal"}}; -- accPi:
bad = { s = table {Masc => " I, " ; -- bura:

Fem => "" }}; -- buri:
tasty = { s = table {Masc=> ",lu}"; -- maze:da:r

Fem => ", lu3"}}; -- maze:da:r
fresh = { s = table {Masc => ".)&" ; -- ta:za:

Fem => "G " }}; -- ta:za:
food = { s = "LL<" ; g = Masc } ; -- kPa:na:
service = { s = "Jugw " ; g = Fem } ; -- sarvis
environment = {s = "Jsal" ; g = Masc } ; -- maho:1

mkRemark quality item = {s = quality.s ! item.g ++ item.s } ;
I

In the lincat rule for Quality, s is an object of a table-type structure
declared as: {s : Gender => Str}. It is read as: "a table from Gender to
String”, where Gender is a parameter defined as follows:

10



param Gender = Masc | Fem ;

This structure shows how we formalize inflection tables in GF, which are then
used to store different inflectional forms. For example, now we are able to
store both masculine and feminine forms of the Quality good. The following
line from the above given code does this task.

good = { s = table {Masc => "laal" ; -- accta:
Fem => "gaal" }} ; -- acchi:

Next, the Item category has an inherent gender property. So, the lincat
rule of the Item is the following:

lincat Item = {s : Str ; g : Gender} ;

This record has two fields. s is a simple string to store the actual string
representation of the Item, while g is of the type Gender and stores the
inherent gender information of the Item. This information is used to select
the appropriate inflectional form of Quality from its inflection table, which
is in agreement with the gender of an Item. This is done in the mkRemark
function i.e.:

mkRemark quality item =
{s = quality.s ! item.g ++ item.s } ;

Note, how the gender of the item (i.e. item.g) is used to select an appropriate
form of the quality using the selection operator (!). This will ensure the
formation of grammatically correct remarks in Urdu. Consider the following
example:

LS Lagl

accha:_gooq K"a:ina:_seeq, good food
EIRPE.EY

acchi:_gooq SATVIS_gervice, GOOd service

It is notable that different inflectional forms of the quality good are used with
the item food (which is inherently masculine) and the item service (which
is inherently feminine). This shows how one can deal with the language-
specific agreement features in the concrete syntax. (see Table 1.1 for more
examples)

Persian Concrete Syntax

In this concrete syntax, we show how to take care of the word order differ-
ences.

11



concrete RemarksPes of Remarks = {

lincat
Quality, Item, Remark = {s : Str } ;

lin
bad = {s = "w"} ; -- bad
tasty = {s = "yedsa"} ; -- xoSmaza:
fresh = {s = "H0"} ; -- ta:za:
food = {s = "li"} ; -- Gaza:
service = {s = "_ug,u"} ; -- sarvis
environment = {s = "lkws"} ; -- mohe:t

mkRemark quality item = {s = item.s ++ quality.s };

};

In Persian, the word order is different from Urdu. In Urdu the quality
preceded the item (i.e. an adjective preceded a noun), while in Persian it
is the other way around. This can be observed in the following linearization
rule:

lin mkRemark quality item = {s = item.s ++ quality.s } ;

This ensures the correct word order in Persian (see Table 1.1 for examples).

Hindi Concrete Syntax

Finally, we consider the concrete syntax of Hindi. In Hindi the inflection and
the word order are very similar to Urdu (at least for this example). The only
difference between Urdu and Hindi concrete syntax is the script. Urdu uses
Perso-Arabic script while Hindi uses Devanagari script as shown below:

concrete RemarksHin of Remarks = {
Param Gender = Masc | Fem ;
lincat
Quality = {s : Gender => Str} ;
Item = {s : Str ; g : Gender} ;
Remark = {s : Str } ;

lin
good = {s = table {Masc=> "3=gI" ; -- accla:
Fem => "3=gI"}}; -- acchi:
bad = {s = table {Masc => "§X1" ; -- bura:
Fem => "ﬁ'ﬁ'” }}; -- buri:
tasty = {s = table {Masc => "HI<¥" ; -- sva:dist

Fem=> "EATG¥"}}; -- sva:dist

12



fresh = {s = table {Masc=>"dNIT" ; -- ta:za:
Fem => "dATS("}}; -- ta:za:
food = {s = "®@M™I" ; g = Masc } ; -- k"a:na:
service = {s = "Har" ; g = Fem } ; -- seva:
environment = {s = "UATALI" ; g = Masc } ; -- parya:varan
mkRemark quality item =
{s = quality.s ! item.g ++ item.s};
+;
Abstract English Hindi Persian Urdu
mkRemark fresh food fresh food SISLREIGL ~50 lae Lla< 506
mkRemark bad environment | bad environment @WUT NV NN dsale Iy
mkRemark bad service bad service ﬂ'ﬁ 4T &g | a6
mkRemark tasty food tasty food TTEE AT | Geden 12 | LS Hluye

Table 1.1: Multilingual Example Remarks

1.3 Indo-Iranian Languages and their Com-
putational Resources

There exist more than 7000 living natural languages around the world (Eth-
nologue), which have been genetically classified into 136 different families.
Indo-European is one of the top 6 language families with 436 living languages,
and around 2.9 billion speakers. This family of languages is further divided
into 10 major branches and the Indo-Iranian is the largest branch with 310
languages. Geographically, this branch covers languages spoken in Eastern
Europe, Southwest Asia, Central Asia, and South Asia, and has more than
one billion native speakers in total. Major languages in this branch are:
Hindustani (Hindi and Urdu) — 240 million native speakers, Bengali — 205
million native speakers, Punjabi — 100 million native speakers, and Persian
— 60 million native speakers (the numbers are taken from the Wikipedia).
There have been a number of individual and combined attempts to build
computational resources for these languages. The major work includes:

1. The PAN Localization! Project: a combined project of Interna-
tional Development Research Center (IDRC), Canada and the Center
for Research in Urdu Language Processing (CRULP), Pakistan. It in-
volves ten Asian countries including Afghanistan, Bangladesh, Bhutan,

Thttp://www.panll0On.net/
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Cambodia, China, Laos, Mongolia, Nepal, Pakistan, and Sri Lanka.
Many linguistic resources including fonts, parallel-corpus, keyboard lay-
outs, dictionaries have been developed and released by different part-
ners of this project.

2. The Indo-WordNet? Project: a project to build a linked WordNet
of Indian languages. It started with the Hindi WordNet project, which
is based on the ideas from the Princeton WordNet [Miller, 1995], and
now has grown to 19 languages with varying size and coverage.

3. The Hindi/Urdu Treebank! Project: This project has been un-
der construction since 2008. The objective is to build a syntactically,
and semantically annotated tree-bank of Hindi/Urdu covering around
400,000 words. Historically, tree-banks (e.g. Penn Treebankg) have
proved to be very useful linguistic resources that can be used for a
number of NLP related tasks including training and testing of parsers.

4. ParGram Urdu Pro jectaz an on-going project for building a compre-
hensive Urdu and Hindi grammar using the Lexical Functional Gram-
mar (LFG) framework. It is part of the ParGram! project, which aims
to build parallel grammars for a number of natural languages including
Urdu. However, Urdu is the least implemented language.

5. Being a liturgical (i.e. holy in the religious context) and the oldest lan-
guage in the region, Sanskrit holds a prominent position in the Indo-
Iranian branch, and has influenced strongly the other languages (e.g.
Hindi) which evolved around it. Due to a number of reasons, including
the complex grammatical structure, it has been of particular interest
for both linguistics and computational linguistics community over the
years. [Monier-Williams, 1846, Kale, 1894] describes different aspects
of the Sanskrit grammar with Panini (4 ¢ BC) being the pioneer one.
A toolkit for morphological and phonological processing of Sanskrit was
reported in [Huet, 2005]. Many other computational resources includ-
ing tagger, morphological analyzer, reader and parser for Sanskrit can
be found on the Sanskrit Heritage websitel.

2http://www.cfilt.iitb.ac.in/indowordnet/
3http://verbs.colorado.edu/hindiurdu/index.html

4http:/ /www.cis.upenn.edu/~treebank/
Shttp://ling.uni-konstanz.de/pages/home/pargram_ urdu/
Shttp://pargram.b.uib.no/
Thttp://sanskrit.inria.fr/index.fr.html
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6. A computational grammar for Urdu was reported in [Rizvi, 2007]. This
work gives a very detailed analysis of Urdu morphology and syntax. It
also describes how to implement the Urdu grammar using the Lexi-
cal Functional Grammar (LFG) and the Head-driven Phrase Structure
Grammar (HPSG) frameworks.

1.4 Major Motivations

The following are four major motivations behind this study:

1. The GF resource grammar library has support of an increasing number
of languages. So far most of these languages belong to the Germanic,
Romance, or Slavic branches of the Indo-European family of languages.
As mentioned previously, out of the 436 Indo-European languages, 310
languages are Indo-Iranian, which means 70% of the languages in this
family belong to the Indo-Iranian branch. Unfortunately, there has not
been enough effort in the past to develop computational resources for
these languages. One example is the Punjabi language. With around
100 million native speakers, it is the 12th most widely spoken language
in the world. When it comes to the computational resources, it is hard
to find any grammatical resources for this language. So, the main mo-
tivation behind this work is to develop computational resources (gram-
mars and lexicons) of these resource-poor languages (Chapter 2-5).

2. Indo-Iranian languages have some distinctive features like the partial
ergative behavior of verbs and the EzafeE construction. Another moti-
vation behind this work is to explore this dimension, and demonstrate
how one can implement such features in GF (Chapter 2 and 4).

3. There are many learned and differing views on whether Hindi and Urdu
are one or two languages, but nothing has been proved computation-
ally. Joshi in a news article [Joshi, 2012] supports the slogan 'one lan-
guage, two scripts’, while [Flagship, 2012, Schmidt, 2004, Naim, 1999]
give arguments to prove them different at different levels. In this study,
we find computational evidence of the similarities/differences between

Hindi/Urdu (Chapter 6).

4. Historically, GF and its resource grammar library have been used to
develop a number of domain-specific NLP applications, but their use

8 Ezafe is a special grammatical feature of Persian, which is used to link words in
phrases [Samvelian, 2007]. It is inherited from Arabic and is commonly used to express
noun-adjective linking.
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at a wider level is largely unexplored. Recently, there have been some
attempts to scale up GF and its resource grammars for open-domain
tasks, such as arbitrary text translation. These include the extension
of the GF parser with statistical ranking for syntactic disambiguation,
and support for robustness [Angelov, 2011]. In this thesis, we take
these attempts further by developing wide-coverage lexicons (Chapter
7), and experimenting for a wide-coverage text translator (Chapter 8).

1.5 Main Contributions and the Organization
of the Thesis

1.5.1 Grammatical Resources

We started developing an Urdu resource grammar with the major objective
to contribute something substantial for the Indo-Iranian languages to the
GF resource grammar library. After nine months of work and with approxi-
mately 2500 lines of the code, the first version of the Urdu resource grammar
was released in the early 2010. The implementation details are given in
Chapter 2, which is based on the following workshop paper:

Shafqat M. Virk, M. Humayoun, A. Ranta. "An Open Source Urdu Re-
source Grammar”. Proceedings of the 8th Workshop on Asian Language
Resources. In conjunction with COLING 2010.

In this work, I am the major contributor in the development of both mor-
phology and syntax. However, as mentioned in the paper the rules of Urdu
morphology are borrowed from a previous work [Humayoun, 2006] on Urdu
morphology development.

Hindi is closely related to Urdu, but being able to find contradictory views
from the literature on whether Hindi and Urdu are one or two languages, the
picture remains mostly unclear. This raised the following research questions:

Is it possible to computationally prove whether Hindi and Urdu are one or
two languages? If the languages are different, how much do they differ and
at what levels? Can this be measured quantitatively?

To find answers to these research questions, we took the Urdu resource gram-
mar and mechanically developed a Hindi resource grammar using functors.
Being able to share 94% of the code at the syntax level favors the view that
Hindi and Urdu are very similar, but this is true mostly at the syntax level,
because at the lexical level, our evaluation results show that Hindi and Urdu
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differed in 18% of the basic vocabulary, in 31% of touristic phrases, and in
92% of mathematical terms. The implementation and further experimental
details are given in chapter 6 and Appendiz A. Chapter 6 is based on the
following workshop paper:

K.V.S. Prasad and Shafqat Mumtaz Virk. “Computational evidence that
Hindi and Urdu share a grammar but not the lexicon”. In The 3rd Workshop
on South and Southeast Asian NLP, COLING 2012.

My main contribution in this work is in the development of the Hindi re-
source grammar (Prasad helped for linguistic details and Devanagari script)
and in adding support for Hindi and Urdu in the Phrasebook and the MGL
application grammars. In the writing process, I mainly contributed in Sec-
tions 6.2, 6.3 and 6.5.

The lessons we learned from the development of the Urdu and Hindi resource
grammar were used to build the Punjabi and the Persian resource grammars.
The implementation details are given in chapter 3 and 4 respectively, which
are based on the following two conferences papers:

Shafqat Mumtaz Virk and Elnaz Abolahrar. 7An Open Source Persian
Computational Grammar”. Proceedings of the Eight International Confer-
ence on Language Resources and Evaluation (LREC’12), Istanbul, Turkey,
May 2012. European Language Resources Association (ELRA).

In this work my major contribution is in the development of the syntax part.
Elnaz is a native Persian speaker, she contributed mostly in the development
of the morphology part, and during the testing and the verification processes.

Shafqat M. Virk, M. Humayoun, A. Ranta. “An Open Source Punjabi Re-
source Grammar”. Proceedings of Recent Advances in Natural Language
Processing (RANLP), pages 70-76, Hissar, Bulgaria, 12-14 September 2011.

In this work my major contribution is in the development of the syntax part.
As it is mentioned in the paper that a Punjabi morphology was developed
independently, after a few required adjustments, we have reused the same
morphological paradigms in the development of this resource grammar.

Nepali and Sindhi resource grammars were developed as master thesis projects
together with Dinesh Simkhada and Jherna Devi Oad respectively. We don’t
give any implementation details in this thesis, assuming that they can be
found in the corresponding thesis reports [Simkhada, 2012] and [Devi, 2012].
However, we include the corresponding language examples and their mor-
phological paradigm documentation in Appendiz B.
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1.5.2 Lexical Resources

Historically, a widely explored and appreciated area of application of the GF
resource grammars has been the controlled language implementations. One
needs to have comprehensive lexical resources to investigate the possibility of
using these resource grammars at wider levels such as open-domain machine
translation. In this study, we report the development of comprehensive mono-
lingual and multi-lingual GF lexicons from existing lexical resources such as
dictionaries and WordNets. Details are given in Chapter 6.

1.5.3 Applications

At the end, to show the usefulness of these grammatical and lexical resources,
we have added support for Urdu and Hindi in a number of controlled lan-
guages: the Phrasebook [Ranta et al., 2012], the Mathematical Grammar
Library (MGL) [Caprotti and Saludes. 2012], and the Attempto Controlled
English (ACE) grammar in GF [Kaljurand and Kuhn, 2013],. Furthermore,
we report our experimenting for a grammar based machine translation sys-
tem using GF resource grammars and wide-coverage lexicons. Details are
given in Chapter 7 and 8.
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Part 11

Grammatical and Lexical
Resources
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Chapter 2

An Open Source Urdu
Resource Grammar

This chapter is based on a workshop paper, and describes the development
of an Urdu Resource Grammar. It explores different lexical and grammatical
aspect of Urdu, and elucidate how to implement them in GF. It also gives
an example to show how the grammar works at different levels: morphology
and syntax.

The layout has been changed and the document has been technically improved.
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Abstract: In this paper, we report a computational grammar of Urdu
developed in the Grammatical Framework (GF). GF is a programming lan-
guage for developing multilingual natural language processing applications.
GF provides a library of resource grammars, which currently supports 16
languages. These grammars follow an Interlingua approach and consist of
morphology and syntax modules that cover a wide range of features of a
language. We explore different syntactic features of Urdu, and show how
to fit them into the multilingual framework of GF. We also discuss how we
cover some of the distinguishing features of Urdu such as ergativity in verb
agreement. The main purpose of the GF resource grammar library is to pro-
vide an easy way to write natural language processing applications without
knowing the details of syntax and morphology. To demonstrate this, we use
the Urdu resource grammar to add support for Urdu in an already existing
GF application grammar.

2.1 Introduction

Urdu is an Indo-European language within the Indo-Aryan family, and is
widely spoken in South Asia. It is the national language of Pakistan and is
one of the official languages of India. It is written in a modified Perso-Arabic
script from right-to-left. As regards vocabulary, it has a strong influence of
Arabic and Persian along with some borrowings from Turkish and English.
Urdu is an SOV language having fairly free word order. It is closely related
to Hindi as both originated from a dialect of Delhi region called khari boli
[Masica, 1991].

We develop a grammar for Urdu, which addresses problems related to
automated text translation using an Interlingua approach. It provides a
way to precisely translate text, which is described in Section 2.2. Next,
we describe different levels of grammar development including morphology
(Section 2.3) and syntax (Section 2.4). In Section 2.6, we briefly describe an
application grammar which shows how a semantics-driven translation system
can be built using these components.

2.2 Grammatical Framework

Grammatical Framework (GF) [Ranta, 2004] can be defined in different ways;
one way to put it is that it is a tool for working with grammars. Another way
is that it is a programming language for writing grammars, which is based on
a mathematical theory about languages and grammars. Many multilingual
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dialog and text generation applications have been built using GF and its
resource grammar library (see GF homepageﬂ for more details).

GF grammars have two levels: abstract syntax and concrete syntax. The
abstract syntax is language independent, and is common to a set of lan-
guages in the GF resource grammar library. It is based on common syntactic
or semantic constructions, which work for all the involved languages on an
appropriate level of abstraction. The concrete syntax, on the other hand, is
language dependent and defines a mapping from abstract to actual textual
representation in a specific language. GF uses the term ‘category’ to model
different parts of speech (e.g. verbs, nouns, adjectives, etc.). An abstract
syntax defines a set of categories, as well as a set of tree building functions.
A concrete syntax contains rules telling how these trees are linearized. Sep-
arating the tree building rules (abstract syntax) from the linearization rules
(concrete syntax) makes it possible to have multiple concrete syntaxes for one
abstract. This makes it possible to parse text in one language and translate
it to multiple other languages.

Grammars in GF can be roughly classified into two kinds: resource gram-
mars and application grammars. Resource grammars are general-purpose
grammars [Ranta, 2009h] that try to cover the general aspects of a language
linguistically, and whose abstract syntax encodes syntactic structures. Ap-
plication grammars, on the other hand, encode semantic structures, but in
order to be accurate they are typically limited to specific domains. They
are not written from scratch for each domain, but may use resource gram-
mars as libraries [Ranta, 2009a]. Previously GF has resource grammars for
15 languages: English, Italian, Spanish, French, Catalan, Swedish, Norwe-
gian, Danish, Finish, Russian, Bulgarian, German, Polish, Romanian, and
Dutch. Most of these languages are European languages. We have developed
resource grammar for Urdu making it the 16th in total and the first South
Asian language. Resource grammars for several other languages (e.g. Arabic,
Turkish, Persian, Maltese, and Swahili) are under construction.

2.3 Morphology

In every GF resource grammar, a test lexicon of 450 words is provided.
The full-form inflection tables are built through special functions called lex-
ical paradigms. The rules for defining Urdu morphology are borrowed from
[Humayoun, 2006], which describes the development of Urdu morphology
using the Functional Morphology toolkit [Forsberg and Ranta, 2004]. Al-
though it is possible to automatically generate equivalent GF code from it,

Lwww.grammaticalframework.org
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we write the rules of morphology from scratch in GF. The purpose is to get
better abstractions than are possible in the generated code. Furthermore,
we extend this work by including compound words. However, the details of
morphology are beyond the scope of this paper, and its focus is on syntax.

2.4 Syntax

While morphology deals with formation and inflection of individual words,
syntax tells how these words (parts of speech) are grouped together to build
well-formed phrases. In this section, we discuss how this works in Urdu and
describe how it is implemented in GF.

2.4.1 Noun Phrases

When nouns are to be used in sentences as part of speech, there are several
linguistic details that need to be considered. For example, other words can
modify a noun, and nouns may have features such as gender, number, etc.
When all such required details are grouped together with a noun, the result-
ing structure is known as a noun phrase (NP). According to [Butt, 1993], the
basic structure of Urdu noun phrase is (M) H (M), where M is a modifier and
H is head of a NP. The head word is compulsory, but modifiers may or may
not be present. In Urdu modifiers are of two types: pre-modifiers and post-
modifiers. The pre-modifiers come before a head noun, for instance, in the
adjectival modification (b &, ka:li: billi:, “black cat”) the adjective black
is a pre-modifier. The post-modifiers come after a head noun, for instance,
in the quantification (s o3, tum sab, “you all”) the quantifier all is used
as a post modifier. In our implementation we represent a NP as follows:

lincat NP : Type = {s : NPCase => Str ; a : Agr} ;
where

param NPCase = NPC Case | NPErg | NPAbl
|NPIns|NPLoc1NPLoc2
|NPDat ; |[NPAcc

param Case = Dir | 0Obl | Voc ;

param Agr = Ag Gender Number UPerson ;

param Gender = Masc | Fem ;

param UPerson = Persl| Pers2_Casual
|Pers2 Familiar | Pers2 Respect
|Pers3_Near | Pers3 Distant;
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param Number = Sg | Pl ;

The curly braces indicates that a NP is a record with two fields: 's' and 'a’.
's' is an inflection table and stores different forms of a noun phrase. The
Urdu NP has a system of syntactic cases, which is partly different from the
morphological cases of the category noun (N). According to [Butt et al., 2002],
the case markers that follow nouns in the form of post-positions cannot be
handled at the lexical level through morphological suffixes, and are thus han-
dled at the syntactic level. We create different forms of a noun phrase to
handle different case markers. Following is a short description of different
cases of a NP:

o NPC Case: this is used to retain the lexical cases of a noun
« NPErg: Ergative case with the case marker ‘ne, .3’

o NPADI: Ablative case with the case marker ‘se, o’

o NPIns: Instrumental case with the case marker ‘se, o’

o NPLocl: Locative case with the case marker ‘me; 1o

e NPLoc2: Locative case with the case marker 'par,

« NPDat: Dative case with case the marker ko, &

o NPAcc: Accusative case with the case marker ‘ko, &

The second filed is a:Agr, which is the agreement feature of a noun phrase.
This feature is used for selecting an appropriate form of other categories
that agree with nouns. A noun is converted to an intermediate category (i.e.
complex noun CN; also known as N-Bar), which is then converted to a NP
category. A CN deals with nouns and their modifiers. As an example consider
the following adjectival modification:

fun A4jCN : AP -> CN -> CN ;

lin AdjCN ap cn = {
s = \\n,c =>
ap.s ' n ! cn.g ! ¢ ! Posit ++ cn.s ! n ! c ;
g =cn.g
s
The linearization of AdjCN gives us complex nouns such as (b 133a5 | t"anda:
pa:mni:, “cold water”), where a CN (il ,pa:ni:, “water”) is modified by an
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AP (1ias tPanda:, “cold”). Since Urdu adjectives also inflect for number,
gender, case and degree, we need to concatenate an appropriate form of an
adjective that agrees with the common noun. This is ensured by selecting
the appropriate form of an adjective and a common noun from their inflec-
tion tables, using the selection operator (!). Since a CN does not inflect in
degree but the adjective does, we fix the degree to be positive (Posit) in this
construction. Other modifiers include possibly adverbs, relative clauses, and
appositional attributes.

A CN can be converted to a NP using different functions. The following
are some of the functions that can be used for the construction of a NP.

fun DetCN : Det -> CN -> NP (e.g. the boy)
fun UsePN : PN -> NP (e.g. John)

fun UsePron : Pron -> NP (e.g. he)

fun MassNP : CN -> NP (e.g. milk)

Different ways of building a NP, which are common in different languages, are
defined in the abstract syntax of a resource grammar, but the linearization of
these functions is language dependent and is therefore defined in the concrete
syntax.

2.4.2 Verb Phrases

A verb phrase is a single or a group of words that acts as a predicate. In our
construction an Urdu verb phrase has the following structure:

lincat VP = {

s : VPHForm => {fin, inf: Str} ;
obj : {s : Str ; a : Agr} ;
vIype : VIype ;
comp : Agr => Str;
embComp : Str ;
ad : Str } ;

where

param VPHForm =
VPTense VPPTense Agr
|VPReq HLevel
| VPStem

and

param VPPTense = VPPres |VPPast |VPFutr;
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param HLevel = Tu |Tum |Ap [Neutr
param Agr = Ag Gender Number UPerson

In GF representation a VP is a record with different fields. A brief description
of these fields follows:

e The most important field is s, which is an inflectional table and stores
different forms of a verb. It is defined as s : VPHForm => {fin,
inf: Str}; and is interpreted as an inflection table from VPHForm to
a tuple of two strings (i.e. {fin,inf:Str}). The parameter VPHForm has
the following three constructors:

VPTense VPPTense Agr
| VPReq HLevel
| VPStem

The constructor VPTense is used to store different forms of a verb re-
quired to implement the Urdu tense system. At VP level, we define Urdu
tenses by using a simplified tense system. It has only three tenses,
labeled as VPPres, VPPast, VPFutr and defined by the parameter
VPPTense. For every possible combination of the values of VPPTense
(i.e. VPPres, VPPast, VPFutr) and Agr (i.e. Gender, Number, UPer-
son) a tuple of two string values (i.e. {fin, inf : Str}) is created.
fin stores the copula (auxiliary verb), and inf stores the corresponding
form of a verb.

The resource grammar has a common API, which has a much-simplified
tense system close to that of the Germanic languages. It is divided into
tense and anteriority. There are only four tenses named as present,
past, future and conditional, and two possibilities of anteriority (Simul
and Anter). This means that it allows 8 combinations. This abstract
tense system does not cover all the tenses of Urdu, which is structured
around tense, aspect, and mood. We have covered the rest of the Urdu
tenses at the clause level. Even though these tenses are not accessible
by the common API, they can be used in language specific modules.

The constructor VPReq is used to store request forms of a verb. There
are four levels of requests in Urdu. Three of them correspond to (
tu:, a3 tum, and o1 a:p) honor levels and the fourth is neutral with
respect to honorific level. Finally, the constructor VPStem stores the
root form of a verb.

The forms constructed at the VP level are used to cover the Urdu tense
system at the clause level. In our implementation, handling tenses at
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the clause level rather than at the verb phrase level simplified the VP
structure and resulted in a more efficient grammar.

e obj is used to store the object of a verb together with its agreement
information.

« vType field is used to store information about the type of a verb. In
Urdu a verb can be transitive, intransitive or di-transitive [Schmidt, 1999].
This information is important, when dealing with ergativity in verb
agreement.

e comp and embComp are used to store complement of a verb. In Urdu
the complement of a verb precedes the actual verb. For example, in
the sentence (= wihyle Ljss ~5, vo: dorna: ca:hti: hee, “she wants to
run”), the verb (Lj3ss, do:rna:, “run”) is complement of the verb (Lyls
, ca:hna:, “want”). However, in cases where a sentence or a question
sentence is the complement of a verb, the complement comes at the
very end of a clause. An example is the sentence (3558 ~5 S o 55 19
o1, vo: kehta: hae ke vo: do:rti: hee, “he says that she runs”). We have
two different fields labled compl and embCompl in the VP structure to
deal with these situations.

e ad is used to store an adverb. It is a simple string that can be attached
to a verb to build a modified verb.

A distinguishing feature of Urdu verb agreement is ergativity. Urdu is one
of those languages that show split ergativity. The final verb agreement is with
direct subject except in the transitive perfective aspect. In that case the verb
agreement is with the direct object and the subject takes the ergative case.

In Urdu, verb shows ergative behavior in the case of the simple past tense,
but in the case of other perfective aspects (e.g. immediate past, remote past
etc.) there are two different approaches. In the first approach the auxiliary
verb (cuka: Ks3) is used to make clauses. If (cuka: KKi) is used, the verb
does not show ergative behavior and the final verb agreement is with direct
subjective. Consider the following example:

o K5 wa Ol K3
larka: pirect Kita:b_pirect Xari:d_poot CUKA® _auxverb D®_copula
The boy has bought a book

The second way to make the clause is.

ot @A oS o S
larke: ne_Erg kita:b_Direct_Fem Xari:di:_Direct_Fem ha_copula
The boy has bought a book
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In the first approach the subject (K3l larka:, “boy”) is in the direct case and
the auxiliary verb ( Ks,cuka:) agrees with the subject, but in the second
approach the verb is in agreement with the object and the ergative case of
subject is used. However, in the current implementation we follow the first
approach.

In the concrete syntax we ensure the ergative behavior with the following
code:

case vt of {
VPPast => case vp.vType of {
(Vtrans| VTransPost) => <NPErg, vp.obj.a>
_ => <NPC Dir, np.a>
s
_ => <NPC Dir, np.a>
I
As shown above, in the case of simple past tense if the verb is transitive then
the ergative case of a noun is used and agreement is with the direct object.
In all other cases, the direct case of a noun is used and the agreement is with
the subject.

Next, we describe how a VP is constructed at the syntax level. There are
different ways, the simplest is:

fun UseV : V -> VP ;

Where V is a morphological category and VP is a syntactic category. There
are other ways to make a VP from other categories. For example:

fun AdvVP : VP -> Adv -> VP ;

An adverb can be attached to a VP to make an adverbial modified VP. For
example (Lisw ,la, yaha soma:, “sleep here” )

2.4.3 Adjective Phrases

At the syntax level, the morphological adjective (i.e. A) is converted to a
much richer category: adjectival phrase AP. The simplest function for this
conversion 1s:

fun PositA : A -> AP ;

Its linearization is very simple, because the linearization type of the category
AP is similar to the linearization type of A.

lin PositA a = a ;
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There are other ways of making an AP for example:
fun ComparA : A -> NP -> AP ;

When a comparative AP is created from an adjective and a NP, constant “ o,
se” is used between oblique form of a noun and an adjective. For example
linearization of the above function follows:

lin ComparA a np = {
s = \\n,g,c,d => np.s ! NPC 0bl ++ " _"
++a.s!ntltgtltcld;

s

2.4.4 Clauses

A clause is a syntactic category that has a variable tense, polarity and order.
Predication of a NP and a VP gives the simplest clause.

fun PredVP : NP -> VP -> C1 ;
Where a clause is of the following type.
lincat Clause = {s : VPHTense => Polarity => Order => Str};

The parameter VPHTense has different values corresponding to different tenses
in Urdu. The values of this parameter are given below:

param VPHTense = VPGenPres | VPPastSimple
| VPFut | VPContPres
| VPContPast | VPContFut
| VPPerfPres | VPPerfPast
| VPPerfFut | VPPerfPresCont
| VPPerfPastCont
| VPPerfFutCont | VPSubj

As mentioned previously, the current abstract level of the common API does
not cover all tenses of Urdu, we cover them at the clause level and they can
be accessed through a language specific module.

The parameter Polarity is used to make positive and negative sentences
and the parameter Order is used to make simple and interrogative sentences.
These parameters are declared as given below.

param Polarity = Pos | Neg
param Order = 0Dir | OQuest

PredVP function will create clauses with variable tense, polarity and order,
which are fixed at the sentence level by different functions, one is:
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fun UseCl : Temp -> Pol -> C1 -> S ;

Here, Temp is a syntactic category, which is in the form of a record having
fields for Tense and Anteriority. Tense in the Temp category refers to
abstract level Tense and we just map it to Urdu tenses by selecting the ap-
propriate clause. This will create simple declarative sentence, other forms of
sentences (e.g. question sentences) are handled in the corresponding category
modules.

2.4.5 Question Clauses and Question Sentences

The resource grammar common API provides different ways to create ques-
tion clauses. The simplest way is to create it from a simple clause.

fun QuestCl : C1 -> QC1 ;

In Urdu simple interrogative sentences are created by just adding (LS, kya:,
"what”) at the start of a direct clause that already has been created at the
clause level. Hence, the linearization of above function simply selects the
appropriate form of a clause and adds LS, kya:, "what” at the start. This
clause still has variable tense and polarity, which is fixed at the sentence level
through different functions, one is:

fun UseQCl : Temp -> Pol -> QCl -> QS ;

Other forms of question clauses include clauses made with interrogative pro-
nouns IP, interrogative adverbs IAdv, and interrogative determiners IDet.
They are constructed through different functions. A couple of them are
given below:

fun QuestVP : IP -> VP -> QC1 (e.g. who walks?)
fun QuestIAdv : IAdv -> Cl -> QCl (e.g. why does he walk?)

IP, IAdv, IDet are built at morphological level and can also be created
with the following functions.

fun AdvIP : IP -> Adv -> IP
fun IdetQuant : IQuant -> Num -> IDet ;
fun PrepIP : Prep -> IP -> IAdv ;

2.5 An Example

Consider the translation of the sentence "he drinks hot milk” from English
to Urdu to see how our proposed system works at different levels. Figure
2.1 shows an automatically generated parse tree for this sentence. As a

31



~NP ~ P
M
VEPSlash NP
[ |
NEZ <3
7
Pron AP N
# S
A ~
'
he drinlcs hot allc

Figure 2.1: Parse Tree

resource grammar developer our goal is to provide correct concrete level
linearization of this tree for Urdu. The nodes in this tree represent different
categories and its branching shows how a particular category is built from
other categories and/or leaves (words from the lexicon). In GF notation
these are the syntactic rules, which are declared at the abstract level.

First, consider the construction of the noun phrase 'hot milk’ from the
lexical units ’hot” and ’milk’. At the morphological level, these lexical units
are declared as constants of the lexical category A (i.e. adjective) and N (i.e.
noun) respectively. The following lexical insertion rules covert these lexical
constants to the syntactical categories: AP (i.e. adjective phrase) and CN (i.e.
common noun).

fun UseA : A -> AP ;
fun UseN : N -> CN ;

The resulting AP (i.e. ’hot’) and CN (i.e. 'milk’) are passed as inputs to the
following function that produces the modified complex noun ’hot milk’ as
output.

fun AdjCN : AP -> CN -> CN ;

Finally this complex noun is converted to the syntactic category NP through
the following function:

fun MassNP : CN -> NP ;

A correct implementation of these rule in Urdu concrete syntax ensures the
correct formation of the noun phrase (a493 a <, garam du:d®,“hot milk”) from
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the noun (a4ss, du:d”, “milk”) and the adjective (xS, garam, “hot”).

Similarly, other constituents of the example sentence are constructed in-
dividually, and finally the clause (o Liy 8493 4 19, vO: garam du:d® pi:ta:
hee, "he drinks hot milk”) is built from the NP (s, vo:, "he”) and the VP (a<
o Uy aaga; garam du:d® pirta: hee, “drinks hot milk”)

The morphology makes sure that correct forms of words are built during
the lexicon development, while language dependent concrete syntax assures
that correct forms of words are selected from lexicon and the word order is
according to the rules of that specific language.

2.6 An application: Attempto

An experiment of implementing controlled languages in GF is reported in
[Ranta and Angelov, 2010]. In this experiment, a grammar for Attempto
Controlled English [Attempto, 2008] was implemented using the GF resource
library, and then was ported to six languages (English, Finnish, French, Ger-
man, Italian, and Swedish). To demonstrate the usefulness of our grammar
and to check its correctness, we have added Urdu to this set. Now, we can
translate Attempto documents between all of these seven languages. The
implementation followed the general recipe for how new languages can be
added [Angelov and Ranta, 2009] and created no surprises. The details of
this implementation are beyond the scope of this paper.

2.7 Related Work

A suite of Urdu resources was reported in [Humayoun, 2006] including a fairly
complete open-source Urdu morphology and a small fragment of syntax in
GF. In this sense, it is a predecessor of the Urdu resource grammar imple-
mented in a different but related formalism. Like the GF resource library,
the ParGram project [Butt and King, 2007] aims at building a set of parallel
grammars including Urdu. The grammars in ParGram are connected to each
other by transfer functions, rather than a common representation. Further,
the Urdu grammar is still the least implemented grammar at the moment.
Other than ParGram, most other work is based on LFG and transla-
tion is unidirectional i.e. from English to Urdu only. For instance, the En-
glish to Urdu MT System is developed under the Urdu Localization Project
[Hussain, 2004, Sarfraz and Naseem, 2007, Khalid et al., 2009]. Zafar and
Masood [Zafar and Masood, 2009] reports another English-Urdu MT sys-
tem developed with the example based approach. [Sinha and Mahesh, 2009

33



presents a strategy for deriving Urdu sentences from English-Hindi MT sys-
tem, which seems to be a partial solution to the problem.

2.8 Future Work

The common resource grammar API does not cover all the aspects of Urdu
language, and non-generalizable language-specific features are supposed to
be handled in language-specific modules. In our current implementation of
Urdu resource grammar we have not covered those features. For example in
Urdu it is possible to build a VP from only VPSlash the (VPSlash category
represents object missing VP) e.g. (o GlaS | kPa:ta: hee) without adding the
object. This rule is not present in the common API. One direction for future
work is to cover such language specific features.

Another direction for future work could be to include the causative forms
of a verb, which are not included in the current implementation due to the
efficiency issues.

2.9 Conclusion

The resource grammar we developed consists of 44 categories and 190 func-
tions, which cover a fair enough part of the language and are enough for
building domain specific application grammars. Since a common API for
multiple languages is provided, this grammar is useful in applications where
we need to parse and translate the text from one to many other languages.
However, our approach of common abstract syntax has its limitations and
does not cover all aspects of Urdu language. This is one reason why it is not
possible to use our grammar for arbitrary text parsing and generation.
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Chapter 3

An Open Source Punjabi
Resource Grammar

The development of the Punjabi resource grammar is described in this chap-
ter, which is based on a conference paper.

The layout has been changed and the document has been technically improved.
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Abstract: We describe an open source computational grammar for Pun-
jabi; a resource-poor language. The grammar is developed in GF (Grammat-
ical framework), which is a tool for multilingual grammar formalism. First,
we explore different syntactic features of Punjabi and then we implement
them in accordance with GF grammar requirements to make Punjabi the
17th language in the GF resource grammar library.

3.1 Introduction

Grammatical Framework [Ranta, 2004] is a special-purpose programming
language for multilingual grammar applications. It can be used to write
multilingual resource or application grammars (two types of grammars in
GF). Multilingualism of the GF grammars is based on the principle that the
same grammatical categories (e.g. noun phrases, verb phrases) and the same
syntax rules (e.g. predication, modification) can appear in different lan-
guages [Ranta, 2009b]. A collection of all such categories and rules, which
are independent of any language, makes the abstract syntax of GF resource
grammars (every GF grammar has two levels: abstract and concrete). More
precisely, the abstract syntax defines semantic conditions to form abstract
syntax trees. For example the rule that a common noun can be modified
by an adjective is independent of any language and hence is defined in the
abstract syntax e.g.:

fun AdjCN : AP -=CN -CN -- very big blue house

However, the way this rule is implemented may vary from one language to
another; as each language may have different word order and/or agreement
rules. For this purpose, we have the concrete syntax, which is a set of lin-
guistic objects (strings, inflection tables, records) providing rendering and
parsing. We may have multiple parallel concrete syntaxes of one abstract
syntax, which makes the GF grammars multilingual. Also, as each concrete
syntax is independent from others, it becomes possible to model the rules
accordingly (i.e. word order, word forms and agreement features are chosen
according to language requirements).

Current state-of-the-art machine translation systems such as Systran,
Google Translate, etc. provide huge coverage but sacrifice precision and
accuracy of translations. On the contrary, domain-specific or controlled mul-
tilingual grammar based translation systems can provide a higher translation
quality, at the expense of limited coverage. In GF, such controlled grammars
are called application grammars.
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Writing application grammars from scratch can be very expensive in terms
of time, effort, expertise, and money. GF provides a library called the GF
resource library that can ease this task. It is a collection of linguistic ori-
ented but general-purpose resource grammars, which try to cover the general
aspects of different languages [Ranta, 2009b]. Instead of writing application
grammars from scratch for different domains, one may use resource grammars
as libraries [Ranta, 2009a] . This method enables him to create the appli-
cation grammar much faster with a very limited linguistic knowledge. The
number of languages covered by GF resource library is growing (17 includ-
ing Punjabi). Previously, GF and/or its libraries have been used to develop
a number of multilingual as well as monolingual domain-specific application
grammars, including but not limited to Phrasebook , GF-KeY , and WebALT
(see GF homepage! for more details).

In this paper we describe the resource grammar development for Punjabi.
Punjabi is an Indo-Aryan language widely spoken in Punjab regions of Pak-
istan and India. Punjabi is among one of the morphologically rich languages
(others include Urdu, Hindi, Finish, etc.) with SOV word order, partial erga-
tive behavior, and verb compounding. In Pakistan it is written in Shahmukhi
and in India it is written in Gurmukhi script [Humayoun and Ranta, 2010].
Language resources for Punjabi are very limited (especially for the one spoken
in Pakistan). With the best of our knowledge this work is the first attempt
of implementing a computational Punjabi grammar as open-source software,
covering a fair enough part of Punjabi morphology and syntax.

3.2 Morphology

Every grammar in the GF resource grammar library has a test lexicon,
which is built through the lexical functions called the lexical paradigms;
see [Bringert et al., 2011]] for synopsis. These paradigms take lemma of a
word and make finite inflection tables, containing the different forms of the
word. These words are build according to the lexical rules of that particu-
lar language. A suite of Punjabi resources including morphology and a big
lexicon was reported by [Humayoun and Ranta, 2010]. With minor required
adjustments, we have reused morphology and a subset of that lexicon, as a
test lexicon of about 450 words for our grammar implementation. However,
the morphological details are beyond the scope of this paper and we refer to
[Humayoun and Ranta, 2010] for more details on Punjabi morphology.

lwww.grammaticalframework.org
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3.3 Syntax

While morphology is about types and formation of individual words (lexical
categories), it is the syntax, which decides how these words are grouped to-
gether to make well-formed sentences. For this purpose, individual words,
which belong to different lexical categories, are converted into richer syntactic
categories, i.e. noun phrases (NP), verb phrases (VP), and adjectival phrases
(AP), etc. With this up-cast the linguistic features such as word-forms, num-
ber & gender information, and agreements, etc., travel from individual words
to the richer categories. In this section, we explain this conversion from
lexical to syntactic categories and afterwards we demonstrate how to glue
the individual pieces to make clauses, which then can be used to make well-
formed sentences in Punjabi. The following subsections explain various types
of phrases.

3.3.1 Noun Phrases

A noun phrase (NP) is a single word or a group of words that does not have a
subject and a predicate of its own, and does the work of a noun [Verma, 1974].
First, we show the structure of a noun phrase in our implementation, followed
by the description of its different parts.

Structure: In GF, we represent a NP as a record with three fields, labeled
as: ‘s’ , ‘a’ and ‘isPron’:
NP: Type = { s : NPCase => Str ;

a : Agr ;

isPron : Bool } ;

The label ‘s’ is an inflection table from NPCase to string (NPCase => Str).
NPCase has two constructs (NPC Case, and NPErg) as shown below:

param NPCase = NPC Case | NPErg ;
param Case = Dir | Obl | Voc | Abl ;

The construct (NPC Case) stores the lexical cases (i.e. direct, oblique, voca-
tive and ablative) of a noun . As an example consider the following table for
the noun “boy”:

. NPC Dir => li% --munda:

. NPC Obl => _is --munde:

. NPC Voc => |:t.j.:a --mundi:a:
. NPC Abl => _suiis --munded

n n n wn
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Other than storing the lexical cases of a noun as shown in the above table,
we also construct the ergative case (i.e. NPErg in the code above). We do it
at the noun phrase level for the following reason: In Urdu, the case markers
that follow a noun in the form of post-positions cannot be handled at lexical
level through morphological suffixes and thus need to be handled at syntax
level [Butt et al., 2002] . It also applies to Punjabi. So, we construct the
ergative case of a noun by attaching the ergative case marker 'ne’ to the
oblique case of a noun at NP level. For instance, the ergative form of our
running example “boy” is:

2
s . NPErg => .3 ol munde ne_g,,

It is used as subjects of perfective transitive verbs (see Section 3.3.5 for more
details). The label ‘a’ represents the agreement feature (Agr) and stores
information about gender, number and person that will be used for agreement
with other constituents. It is defined as follows:

param Agr = Ag Gender Number Person ;

In Punjabi, the gender can be masculine or feminine; number can be singular
and plural; and person can be first, second casual, second with respect and
third person near & far. These are defined as shown below:

param Gender = Masc | Fem ;

param Number = Sg | P1 ;

param Person = Persl | Pers2_Casual | Pers2_Respect
| Pers3 Near | Pers3_Far ;

Finally, the label ‘isPron’ is a Boolean parameter, which shows whether
a NP is constructed from a pronoun. This information is important when
dealing with the exceptions in ergative behavior of verbs for the first and
second person pronouns in Punjabi. For example consider the following con-
structions:

mé_1 ro:ti:_pread kha:di:_ate (S'JLAS LS‘f‘JJu:““
I ate bread.

~ . h . L &
ti_vyou TO:ti: preag Kra:d i:_ape (olaS Goy o
You ate bread.

au: Ne pe TO:ti: pread K'a:di: are (golaS Sy,
He ate bread.

. I ho.J3:. Y
munde: _poy N€_grgMarker TO:ti:_preaa K @a:dii_spe (ulaS (g & odie
The boy ate bread.
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From the above examples, we can see that, when we have the first or second
person pronoun as subject, the ergative case marker is not used (first two ex-
amples). However, it is used in all other cases. So for our running example,
i.e. the noun (boy, munda:), the label (isPron) is false.

Construction: First, the lexical category noun (N) is converted to an in-
termediate category, common noun (CN) through the (UseN) function.

fun UseN : N =CN ; -- li% munda:

Then, the common noun is converted to the syntactic category, noun phrase
(NP). Three main types of noun phrases are: (1) common nouns with deter-
miners, (2) proper names, and (3) pronouns. We build these noun phrases
through different noun phrase construction functions depending on the con-
stituents of a NP. As an example consider (1). We define it with a function
DetCN given below:

Every boy, har_cyery munda: yoy
fun DetCN : Det -CN -=NP ;

Here (Det) is a lexical category representing determiners. The above given
function takes the determiner (Det) and the common noun (CN) as parame-
ters and builds the NP, by combining appropriate forms of a determiner and
a common noun agreeing with each other. For example if ‘every’ and ‘boy’
are the parameters for the above given function the result will be the NP:
every boy, har munda:. Consider the linearization of DetCN:

lin DetCN det cn = {
s = \\c => detcn2NP det cn c det.n;
a = agrP3 cn.gdet.n ;
isPron = False } ;

As we know from the structure of a NP (given in the beginning of §3.3.1) ‘s’
represents the inflection table used to store different forms of a NP built by
the following line from the above code:

s = \\c => detcn2NP det cn c det.n;

Notice that the operator (¢\\’) is used as a shorthand to represent different
rows of the inflection table ‘s’. An alternative but a verbose code segment
for the above line will be:

s = table {
NPC Dir => detcn2NP det cn Dir det.n;
NPC 0Obl => detcn2NP det cn 0bl det.n;
NPC Voc => detcn2NP det cn Voc det.n;

40



NPC Abl => detcn2NP det cn Abl det.n
+

Where the helper function detcn2NP is defined as:

detcn2NP : Determiner -CN -NPCase -
Number -+Str =
\dt,cn,npc,n ~case npc of {
NPC ¢ => dt.s ++ cn.s!n!lc ;
NPErg => dt.s ++ cn.s!n!0Obl ++ "ne:" } ;

Also notice that the selection operator (the exclamation sign !) is used to
select appropriate forms from the inflection tables (i.e. cn.s!n!c, which
means the form of the common noun with number ‘n’ and case ‘c’ from
the inflection table cn.s). Other main types of noun phrases (2) and (3) are
constructed through the following functions.

fun UsePN : PN =NP ; Ali, eli:
fun UsePron : Pron -=NP ; he, oo

This covers only three main types of noun phrases, but there are other types
of noun phrases as well, i.e. adverbial post-modified NP, adjectival modified
common nouns etc. In order to cover them, we have one function for each
such construction. Few of these are given below; for full details we refer to
[Bringert et al., 2011].

Paris today, ajj_today P1:Tras_paris
fun AdvNP : NP -Adv -NP ;

Big house, vada:_piz 8"ar_nouse
fun AdjCN : AP -CN ~CN ;

3.3.2 Verb Phrases

A verb phrase (VP), as a syntactic category, is the most complex structure in
our constructions. It carries the main verb and auxiliaries (such as adverb,
object of the verb, type of the verb, agreement information, etc.), which are
then used in the construction of other categories and/or clauses.

Structure: In GF, we represent a verb phrase as a record, as shown below:
VPH : Type = {

s : VPHForm => {fin, inf : Str} ;

obj : {s : Str ; a : Agr} ;

vIype : VType ;
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comp : Agr =>Str;
ad : Str
embComp : Str} ;

The label ‘s’ represents an inflection table, which keeps a record with two
string values, i.e. fin, inf : Str for every value of the parameter VPH-
Form, which is defined as shown below:

param VPHForm = VPTense VPPTense Agr | VPInf | VPStem ;
param VPPTense = PPres | VPPast | VPFutr | VPPerf;

The structure of VPHForm makes sure that we preserve all inflectional forms
of the verb. In it we have three cases: (1) Inflectional forms inflecting for
tense (VPPTense) and number, gender, person. (2) The second construc-
tor (VPInf) carries the infinitive form. (3) VPStem carries the root form.
The reason for separating these three cases is that they cannot occur at the
same time. The label ‘inf’ stores the required form of the verb in that
corresponding tense, whereas ‘fin’ stores the copula (auxiliary verb). The
label ‘obj’ on the other hand, stores the object of a verb and also the agree-
ment information of the object. The label ‘vType’ stores information about
transitivity of a verb with VType, which include: intransitive, transitive or
di-transitive:

param VType = VIntrans | VTrans | VDiTrans ;

The label ‘comp’ stores the complement of a verb. Notice that it also inflects
in number, gender and person ( Agr is defined previously), whereas the label
‘ad’ stores an adverb. Finally, ‘embComp’ stores the embedded complement.
It is used to deal with exceptions in the word order of Punjabi, when making
a clause. For instance, if a sentence or a question sentence is a complement
of a verb then it takes a different position in a clause; i.e. it comes at very
end of the clause as shown in the example with bold-face:

00_ghe kehendi: suy ae_pux K€_that ME_1 TO:ti_pread khanc_la:_e@,c Wa_pux
She says that I (masculine) eat bread.

However, if an adverb is used as a complement of a verb then it comes before
the main verb, as shown in the following example:

00_she kehendi gy a€_pux K€_that 00_she t€:Z_prisray Caldi: yaiks
A€ _pux
She says that she walks briskly

Construction: The lexical category verb (V) is converted to the syntactic
category verb phrase (VP) through different (VP) construction functions.
The simplest is:
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fun UseV : V 2VP ; -- sleep, so:na:
lin UseV v = predV v ;

The function (predV) converts the lexical category (V) to the syntactic cat-
egory (VP).

predV : Verb -VPH = \verb -> {
s = \\vh => case vh of {
VPTense VPPres (Ag g n p) => fin =copula CPresent n p g;
inf =verb.s!VF Imperf pn g ;
VPTense VPPast (Ag g n p) => {
fin = [] ; inf =verb.s!VF Perf pn g
s
VPTense VPFutr (Ag g n p) => {
fin = copula CFuture n p g ;
inf = verb.s ! VF Subj pn g
s
VPTense VPPerf (Ag g n p) => {
fin = [] ; inf = verb.s!Root ++ cka g n
s
VPStem => { fin = [] ; inf = verb.s ! Root };
_=>{fin = [] ; inf = verb.s!Root}
I
obj = {s = [1 ; a = defaultAgr} ;
vIype = VIntrans ;
ad = [] ;
embComp = [] ;
comp = \\_ => []
s

The lexical category (V) has three forms (corresponding to perfective/imper-
fective aspects and subjunctive mood). These forms are then used to make
four forms (VPPres, VPPast, VPFutr, VPPerf in the above code) at the
VP level, which are used to cover different combinations of tense, aspect and
mood of Punjabi at the clause level. As an example, consider the explanation
of the above code in bold-face. It builds a part of the inflection table repre-
sented by ‘s’ for ‘VPPres’ and all possible combination of gender, number
and person (Ag g n p). Asshown above, the imperfective form of the lexical
category (V) (i.e. VF Imperf p n g) is used to make the present tense at
the (VP) level. The main verb is stored in the field labeled as ‘inf’ and the
corresponding auxiliary verb (copula) is stored in the label ‘fin’. All other
parts of (VP) are initialized to default or empty values in the above code.
These parts will be used to enrich the (VP) with other constituents, e.g.

43



adverb, complement etc. This is done in other (VP) construction functions
including but not limited to:

Want to run, do:rna: ,u,, ca:na: _yant
ComplVV : VV =VP =VP;

Say that she runs, kena: g.; K€_tnat 00_she d0:Tdi:_run @€_coupla
ComplVS : VS =+S =VP; ,

Sleep here, ai:the_l1ere S0:Na _gleep
AdvVP : VP -Adv -VP;

3.3.3 Adjectival Phrases

At morphological level, Punjabi adjectives inflect in number, gender and case
[Humayoun and Ranta, 2010]. At syntax level, they agree with the noun they
modify using the agreement information of a NP. An adjectival phrase (AP)
can be constructed simply from the lexical category adjective (A) through
the following function:

PositA : A -AP ; -- (Warm, garam)
Or from other categories such as:
Warmer than I, mi:re_; t0_ihan garam_yarm

ComparA : A -=NP -AP ;

Warmer, garam
UseComparA : A -AP ;

As cool as Ali, ai:na: ., t"anda: ., jina: .o eli: .3
CAdvAP : CAdv -AP -NP -AP ;

3.3.4 Adverbs and Closed Classes

The construction of Punjabi adverbs is very simple because “they are nor-
mally unmarked and don’t inflect” [Humayoun and Ranta, 2010]. We have
different construction functions for adverbs and other closed classes at both
lexical and syntactical level. For instance, consider the following construc-
tions:

Warmly, garam jo:xi:
fun PositAdvAdj : A -Adv ;
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Very quickly, bahut_yery ti:Zi:_guickiy de na:l_coupla
fun AdAdv : AdA -Adv -Adv ;

3.3.5 Clauses

While a phrase is a single word or group of words, which are grammatically
linked to each other, a clause is a single phrase or group of phrases. Different
types of phrases (e.g. NP, VP, etc.) are grouped together to make clauses .
Clauses are then used to make sentences. In the GF resource grammar API
tense system the difference between a clause and a sentence is: a clause has a
variable tense, while a sentence has a fixed tense. We first construct clauses
and then just fix their tense in order to make sentences. The most important
function for the construction of a clause is:

PredVP : NP »VP =Cl ; -- Ali walks
The clause (Cl) has the following linearization type:
Clause : Type = {s : VPHTense => Polarity => Order =>Str} ;

Where:

param VPHTense = VPGenPres | VPImpPast | VPFut
| VPContPres | VPContPast| VPContFut
| VPPerfPres | VPPerfPast | VPPerfFut
| VPPerfPresCont | VPPerfPastCon
| VPPerfFutCont | VPSubj ;
param Polarity = Pos | Neg
param Order = 0Dir | OQuest

The tense system of GF resource library covers only eight combinations with
four tenses (present, past, future and conditional) and two anteriorities (An-
ter and Simul). It does not cover the full tense system of Punjabi, which
is structured around the aspect, tense, and mood. We make sentences in
twelve different tenses (VPHTense in the above given code) at clause level
to get a maximum coverage of the Punjabi tense system. Polarity is used
to construct positive and negative, while ‘Order’ is used to construct direct
and question clauses. We ensure the SOV agreement by saving all needed
features in a (NP). These are made accessible in the PredVP function. A
distinguishing feature of Punjabi SOV agreement is ergative behavior where
transitive perfective verb may agree with the direct object instead of the sub-
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ject. Ergativity is ensured by selecting the agreement features and noun-form
accordingly. We demonstrate this in the following simplified code segment:

let subjagr : NPCase * Agr = case vt of {
VPImpPast => case vp.subj of {
VIrans => <NPErg, vp.obj.a>;
VDiTrans => <NPErg, defaultAgr> ;
- => <NPC Dir, np.a>
P
- => <NPC Dir, np.a>}

For perfective aspect VPImpPast, if a verb is transitive then it agrees with the
object and therefore the ergative case of a NP is used ( achieved through the
line VTrans => <NPErg, vp.obj.a> in the above code). For DiTransitive
verbs the agreement is set to the default but the ergative case is still needed
(i.e. VDiTrans =><NPErg, defaultAgr>).

In all other cases (specified with the wild card “__” in the above code) the
agreement is made with the subject (np.a), and we use the direct case (i.e.
NPC Dir).

After selecting the appropriate forms of each constituent (according to
the agreement features) they are grouped together to form a clause. For
instance, consider the following simplified code segment combining different
constituents of a Punjabi clause:

np.s!subj ++ vp.ad ++ vp.compl!np.a ++ vp.obj.s ++ nahim ++ vps.
inf ++ vps.fin ++ vp.embComp;

Where: (1) np.s!subj is the subject; (2) vp.ad is the adverb (if any); (3)
vp.comp!np.a is verb’s complement; (4) vp.obj.s is the object (if any); (5)
nahim is the negative clause constant; (6) vps.inf is the verb; (7) vps.fin
is the auxiliary verb; (8) vp.embComp is the embedded complement.

3.4 Coverage and Limitations

The grammar we have developed consists of 44 categories and 190 syntax
functions. It covers a fair enough part of the language but not the whole lan-
guage. The reason for this limitation is the approach of a common abstract
syntax defined for a set of languages in the GF resource library. Indeed it is
not possible to have an abstract syntax, which is common to, and covers all
features of the full set of languages. Consequently, the current grammar does
not cover all aspects of Punjabi. However, this does not put any limitation
on the extension of a language resource. It can be extended by implementing
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language specific features in an extra language-specific module. These fea-
tures will not be accessible through the common API, but can be accessed
in Punjabi application grammars.

3.5 Evaluation and Future Work

It is important to note that completeness is not the success criteria for this
kind of grammar based resource, but the accuracy is [Ranta, 2009a]. Evalu-
ating a resource grammar is just like evaluating a software library in general.
This type of evaluation is different from evaluation of a natural language pro-
cessing application in general, where testing is normally done against some
corpus. To evaluate the accuracy, we use the Punjabi resource grammar to
translate, and observe, a test suite of examples from English to Punjabi. We
achieved an accuracy of 98.1%. The reason for not having 100% accuracy is
that our current grammar does not cover all aspects of the language. One
such aspect is compound verbs of Punjabi, formed by nouns and the aux-
iliary verb ‘to be’ (hona:). In this case, the gender of auxiliary verb must
agree with the inherent gender of the noun. We have not yet covered this
agreement for compound verbs, which will produce incorrect translations.
An interesting (yet wrong) example would be:

barix ho:nda: pe:a: ae (It is raining)
Instead of "ho:nda: pi:a:", it should be "hondi: pai:"

Another, such feature is the repetitive use of verbs in Punjabi (e.g. munda: 1y
~ . > . . L2
runde  weping TUNAE  weping ST slept 8l:1a1 coupla, bS L oMy, oy, Idie, the

boy slept weeping). Coverage of such language specific details is one direction
for the future work.

3.6 Related Work and Conclusion

In general language resources for Punjabi are very limited; especially for the
one spoken in Pakistan and written in Shahmukhi. Furthermore, most of the
applications related to Punjabi are designed only for the Punjabi, written
and spoken in India; hence, only support the Gurmukhi script. A review
of such applications is given in [Lehal., 2009]. There are some attempts to
interchange between these scripts with transliteration systems. However, the
current systems only seem to provide partial solutions, mainly because of the
vocabulary differences [Humayoun and Ranta. 2010]. A transfer-based ma-
chine translation system reported in [Lehal., 2009] translates between Pun-
jabi and Hindi only. On the contrary, the Punjabi resource grammar is based

47



on an Inter-lingua approach, which makes it possible to translate between
seventeen languages in parallel. With the best of our knowledge, this work
is the first attempt to implement a computational Punjabi grammar as open
source.

We have described implementation of the computational grammar for
Punjabi. Punjabi is an under-resourced language. So, this work might be a
useful resource, and may encourage other researchers to work in this direc-
tion. As the resource grammar does not cover full features of Punjabi, it is
not possible to use it for parsing and translation of arbitrary text. However,
it is best suited for building domain specific application grammars.
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Chapter 4

An Open Source Persian
Computational Grammar

This chapter is based on a conference paper and describes the development
of the Persian resource grammar. Other than describing the development
of different general-purpose grammatical constructions of Persian, it also
describes how to deal with distinctive features, such as ezafe construction, in
Persian.

The layout has been revised.
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Abstract: In this paper, we describe a multilingual open-source compu-
tational grammar of Persian, developed in the Grammatical Framework (GF)
— A type-theoretical grammar formalism. We discuss in detail the structure
of different syntactic (i.e. noun phrase, verb phrase, adjectival phrase, etc.)
categories of Persian. First, we show how to structure and construct these
categories in GF. Then, we describe how they are glued together to make
well-formed sentences in Persian, while maintaining the grammatical features
such as agreement, word order, etc. We also show how some of the distinc-
tive features of Persian, such as the ezafe construction, are implemented in
GF. In order to evaluate the grammar’s correctness, and to demonstrate its
usefulness, we have added support for Persian in a multilingual application
grammar (Phrasebook) using the reported resource grammar.

Keywords: Grammatical Framework, Abstract syntax, Concrete syntax.

4.1 Introduction

The idea of providing assistance to programmers in the form of software
libraries is not new. It can be traced back to 1959, when JOVIALH gave
the concept of COMPOOL (Communication Pool). In this approach, the
code and data that provide independent services are made available in the
form of software libraries. Software libraries are now at the heart of modern
software engineering, and many programming languages (e.g. C, C++, Java,
Haskell, etc.) come with built-in libraries. However, the idea of providing
natural language grammars as software libraries is new in GF (Grammatical
Framework) [Ranta, 2004].

GF is a special purpose programming language designed for developing
natural language processing applications. Historically, GF and its libraries
have been used to write a number of application grammars including GF-
Key — a tool for authoring and translation of software specifications, TALK
— a multilingual and multimodal spoken dialogue system, and WebALT — an
application grammar for multilingual generation of mathematical exercises.
Moreover, GF has support for an increasing number of natural languages.
Currently, it supports 23 languages (see the statusl of GF resource library
for more details). GF provides libraries in the form of resource grammars —
one of the two types of programs that can be written in GF. A resource gram-
mar is a general-purpose grammar [Ranta, 2009b] that encodes the syntactic
constructions of a natural language. For example modification of a noun by

LJOVIAL is a high-order programming language specialized for the development of
embedded systems
2http://www.grammaticalframework.org/lib/doc/status.html
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an adjective is a syntactic construction, and it is developed as a part of a re-
source grammar development. A collection of such syntactic constructions is
called a resource grammar. A resource grammar is supposed to be written by
linguists, who have sufficient grammatical knowledge (i.e. knowledge about
word order, agreement features, etc.) of the target natural language. The
other type of grammar that one can write in GF is an application grammar.
It is a domain specific grammar that encodes semantic constructions. It is
supposed to be written by domain experts, who have a better understanding
of the domain specific terms. However, an application grammar may use a
resource grammar as a supporting library [Ranta, 2009a] through a common
resource grammar API .

Furthermore, every grammar in GF has two levels: abstract syntax
and concrete syntax, which are based on Haskell Curry’s distinction of
tectogrammatical and phenogrammatical structures [Curry, 1961]. The
abstract syntax is independent of any language and contains a list of cate-
gories (cat), and a set of tree-defining functions (fun). The concrete syntax
contains rules telling how the abstract syntax categories and trees are lin-
earized in a particular language. Since the abstract syntax is common to a
set of languages — languages that are part of the GF resource library — it
becomes possible to have multiple parallel concrete syntaxes for one abstract
syntax. This makes the GF resource library multilingual. Development of
a resource grammar means writing linearization rules (i.e. lincat and lin) of
the abstract syntax categories and functions (i.e. cat and fun), for a given
natural language. This is a challenging task, as it requires comprehensive
knowledge of the target natural language as well as practical programming
experience of GF. In this paper, we describe the development of the Persian
resource grammar.

Persian is an Iranian language within the Indo-Iranian branch of the Indo-
European family of languages. It is widely spoken in Iran, Afghanistan,
Tajikistan, and Uzbekistan. In Iran it is also called Farsi, and the total num-
ber of Farsi speakers is about 60 million [Bahrani et al., 2011]. It has a suffix
predominant morphology, though there are a small number of prefixes as well
[Megerdoomian, 2000]. Persian tense system is structured around tense, as-
pect and mood. Verbs agree with their subject in number and person, and
there is no grammatical gender [Mahootivan, 1997]. Persian has a relatively
free word order [Miiller and Ghayoomi, 2010], but declarative sentences are
mostly structured as “(S) (O) (PP) V”. Optional subject (S) is followed by
an optional object (O), which is followed by an optional propositional phrase
(PP). All these optional components precede the head verb (V).

The paper is structured as follows: In Sections 4.2 and 4.3, we talk about
morphology and syntax (two necessary components of a grammar) followed
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by an example in Section 4.4. Coverage and evaluation is discussed in Section
4.5, while related and future work follows in Section 4.6.

4.2 Morphology

Every GF resource grammar has a test lexicon of almost 450 words. These
words belong to different lexical categories (both open and closed), and have
been randomly selected for test purposes. Different inflectional forms of these
words are built through special functions called lexical paradigms. These
lexical paradigms take the canonical form of a word and build finite inflection
tables. However, the morphological details are beyond the scope of this paper
and it concentrates on the syntactical details.

4.3 Syntax

While morphology is about principles and rules of making individual words,
syntax is about how these words are grouped together to make well-formed
sentences in a particular language. In this section, we describe the syntax
of Persian. First, in the following subsections we discuss different syntactic
categories (i.e. noun phrases, verb phrases, adjectival phrases, etc.) indi-
vidually. Then, we show how they are glued together to make clauses and
sentences in sections 4.3.5 and 4.3.6 respectively.

4.3.1 Noun Phrase

A noun phrase is a single word or a group of grammatically related words
that function as a noun. It consists of a head noun, which is constructed
at the morphological level, and one or more optional modifiers. In Persian,
modifiers mostly follow the noun they modify, even though in limited cases
they can precede it. Below, we show the structure of a noun phrase (NP) in
our implementation, followed by its construction.

Structure: A noun phrase (NP) has the following structure:

cat NP ;

lincat NP:Type = {s : NPForm=>Str;
a : AgrPes ;
animacy : Animacy };

Where

param NPForm = NPC Ezafe ;
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param Ezafe = bEzafe | aEzafe | enClic;
param AgrPes = AgPes Number PPerson;

param Number

Sg | P1;

param PPerson = PPersl | PPers2| PPers3;
param Animacy = Animate | Inanimate ;

The curly braces show that a NP is a record of three fields. The purpose of
different fields of a NP is explained below:

's' defined as s:NPForm=>Str is interpreted as: s is an object of the
type NPForm=>Str, where the type NPForm=>Str is a table type struc-
ture. In GF, we use such table type structures to formulate inflection
tables. In brief s stores different forms of a noun phrase corresponding
to the parameters bEzafe (a form without the ezafe suffix), aEzafe
(a form with the ezafe suffix) and enClic (a form with the enclitic
particle). For example consider the following table for the noun house.

. NPC bEzafe =>4la -- yamach

. NPC aEzafe =>g «l& -- yameehi:
. NPC enClic =>4l ¢la -- yamahari:
. AgPes Sg PPers3

animacy . Animate

v N n

These forms are then used in the construction of clauses and/or other
categories. For example, in Persian the aEzafe form is used in modi-
fications like, adjectival modification (e.g. &, ¢ & yameehi: bazorg
, big house), and in showing possession (e.g. (e s ©la, yamaehi:
man, my house). The enClic form is used in constructions where the
noun is followed by a relative clause e.g. cuwl 537 S gl GlA yamachari:
keh ainja: arsat, the house which is there.

'a' is the agreement parameter and stores information about number
and person of a noun phrase. This information is used for agreement
with other categories.

'animacy' keeps the information about whether the head noun in the
noun phrase is animate or inanimate. This information is useful in the
subject-verb agreement at the clause level.

Construction: The head noun corresponds to the morphological category
noun N. The morphological category N is first converted to an intermediate
category called common noun CN, through the following function:

fun UseN : N -> CN ; -- «l& ,yamaeh, house
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Where a common noun has the following structure:
lincat CN = {s : Ezafe=>Number=>Str ; animacy : Animacy};

It deals with modification of a noun by different modifiers including but
not limited to adjectives, quantifiers, determiners, etc. We have different
functions for these modifications. Consider the following function that is
used for adjectival modification:

fun AdjCN : AP -> CN -> CN ;
-- K,3» g~ yameehir bzorg , big house

And its linearization rule for Persian is given below:

lin AdjCN ap cn = {
s = table { bEzafe => table {
Sg => cn.s ! aEzafe ! Sg ++ ap.s ! bEzafe;
Pl => cn.s ! aEzafe ! P1 ++ ap.s ! bEzafe
I
aEzafe => table {
Sg => cn.s ! aEzafe ! Sg ++ ap.s ! aEzafe;
Pl => cn.s ! aEzafe ! P1 ++ ap.s ! aEzafe
I
enClic => table {
Sg => cn.s ! aEzafe ! Sg ++ap.s ! enClic;
P1 => cn.s ! aEzafe ! P1 ++ ap.s ! enClic
¥
s
animacy = cn.animacy

};

The above linearization rule takes an adjectival phrase and a common noun
and builds a modified common noun. Again, 's' in the above given code
is an inflection table from Ezafe to Number to String, and stores different
inflectional forms of a modified common noun. Since Persian adjectives do
not inflect for number, we use the same form of an adjective, both for Sg and
P1 parameters of the common noun. However, adjectives have three forms
corresponding to bEzafe, aEzafe and enClic (see Section 4.3.3). As it is
clear in the above code, whenever a common noun is modified by an adjective,
the aEzafe form of the common noun is used (i.e. cn.s ! aEzafe ! Sg).
Moreover, the modifier follows the common noun to ensure the proper word
order. GF provides a syntactic sugar for writing the above table concisely.
For example the above given code can be replaced by the following simplified
version.
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lin AdjCN ap cn = {
s = \\ez,n => cn.s ! aEzafe ! n ++ ap.s ! ez;
animacy = cn.animacy

s

Note how the \\ operator is used as a syntactic sugar with parameter vari-
ables ez and n to compress the branches of a table together. Also note that
the symbol ! is used as a selection operator to select different values from
the inflection table and ++ is used as a concatenation operator.

The resulting common noun is then converted to a noun phrase (NP)
through different functions depending on the constituents of a NP. In the
simplest case a common noun without any article can be used as a mass
noun phrase. It is constructed through the following function:

fun MassNP : CN -> NP ; -- i, aib, water
And its linearization rule is:

lin MassNP cn = {s = \\ez => cn.s ! ez ! Sg
a AgPes PPers3 Sg ;
animacy = cn.animacy

s

This function takes a common noun and converts it to a NP.
Few others functions for the construction of a NP are:

fun DetCN : Det -> CN -> NP ;

-- 4y, mard, man
fun AdvNP : NP -> Adv -> NP ;

-= 9l sw,ly pariis amro:z, Paris today
fun DetNP : Det -> NP ;

-- @w el ,am panj, these five

4.3.2 Verb Phrase

A verb phrase normally consists of a verb and one or more optional com-
plements. It is the most complicated category in our constructions. First,
we explain the structure of the Persian verb phrase in detail, and then we
continue with the description of its construction.

Structure: In our construction a verb phrase VP has the following structure:

cat VP ;

lincat VP : Type = {
s : VPHForm => {inf : Str} ;
obj : Str ;
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comp : AgrPes => Str;
vComp : AgrPes => Str;
embComp : Str ;

inf : Str;
adv : Str;
s

Where

param VPHForm = VPTense Polarity VPPTense AgrPes
| VPImp Polarity Number
| VVForm AgrPes
| VPSteml
| VPStem?2 ;
param VPPTense = VPPres Anteriority
|VPPast Anteriority
|VPFutr Anteriority
|VPCond Anteriority ;
param Anteriority = Simul | Anter ;

A brief explanation of different fields and their purpose is given below:

e Once again, 's' is an inflection table, and here, it stores the actual
verb form. We make different forms of a verb at the verb phrase level.
The parameter VPHForm in the above code stores these different forms.
A brief overview of these forms and their usage is given below:

— 'VPTense' is a constructor with context parameters Polarity,
VPPTense and AgrPes. It stores different forms of a verb inflect-
ing for polarity, tense and AgrPes (where AgrPes = AgPes
Number PPerson). These forms are used to make nominal declar-
ative sentences at the clause level.

— '"VPImp' stores the imperative form of a verb inflecting for polarity
and number.

— 'VVForm' stores the form of a verb, which is used when a verb
takes the role of a complement of another verb (i.e. in the con-
struction “want to run”, ‘to run’ is used as a complement of the
auxiliary verb ‘want’. In English the infinitive of the second verb
(‘to run’) is used as the complement of the auxiliary verb (‘want’),
but in Persian in most cases the present subjunctive form of the
second verb is used as the complement of the auxiliary verb. We
name this form as the VVForm. It inflects for number and person.
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— Finally 'VPSteml' and 'VPStem2' store the present and past roots
of a verb, which have different forms in Persian.

'obj' is a string type field, which stores the direct object of a verb.

"comp' is an inflection table which stores the complements of a verb;
those other than a direct object. The complement needs to be in agree-
ment with the subject both in number and person. Therefore, we keep
all the inflectional forms (inflecting for number and person) of a comple-
ment. This parameter is used to store indirect objects of di-transitive
verbs.

'vComp' is another inflection table inflecting for number and person.
When a verb is used as a complement of an auxiliary verb, we store it
in this field. Unlike comp or obj, this type of complement follows the
auxiliary verb. For example in the sentence wlsas aalsa o sl, amr mi:
xu:athad bxuia:bad, she wants to sleep, the verb ;aulsa, xuiarbi:dan
, to sleep is the complement of the auxiliary verb (fwlsa | xvaistan,
want, therefore it will follow the auxiliary verb.

"embComp' is a simple string and is used when a declarative or inter-
rogative sentence is used as a complement of a verb. For example in the
sentence aslsa o ayls oo €€ 16S o ), amur mir goitd keh man damram
mi: xutatham, she says that I am sleeping, the sentence ‘QJIJ Y
mlsa e, man darram mi: xuzatham , I am sleeping is a complement
of the verb (& goftan, to say. This type of complement comes at
the very end of a clause. The reason behind storing different types of
complements in different fields is that in Persian these different com-
plements take different positions within a clause (see section 4.3.5 for
more details).

"inf' simply stores the infinitive form of a verb.

'adv' is a string field and stores an adverb.

Construction: The verb phrase VP is constructed from the morphological
category verb V by providing its complements. In the simplest case, a single
verb without any complements can be used as a verb phrase. We create this
verb phrase through the following function:

fun UseV : V -> VP ;
Oswlsa xutarbirdan, sleep

And its linearization rule is:
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lin UseV v = predV v ;
Where

oper predV : Verb -> VP = \verb -> {
s = \\vh =>
case vh of {
VPTense pol (VPPres Simul) (AgPes n p) => inf = verb.s !
VF pol (PPresent PrImperf) p n ;
VPTense pol (VPPres Anter) (AgPes n p) =>
{ inf = verb.s ! VF pol (PPresent PrPerf) p n } ;
VPTense pol (VPPast Simul) (AgPes n p) =>
{ inf =verb.s ! VF pol (PPast PstAorist) p n } ;
VPTense pol (VPPast Anter) (AgPes n p) =>
{ inf =verb.s ! VF pol (PPast PstPerf) pn } ;
VPTense pol (VPFutr Simul) (AgPes n p) =>
{ inf =verb.s ! VF pol (PFut FtAorist) p n } ;
VPTense pol (VPFutr Anter) (AgPes n p) =>
{ inf = verb.s ! VF pol (PPresent PrPerf) pn } ;
VPTense pol (VPCond Simul) (AgPes n p) =>
{ inf = verb.s ! VF pol (PPast PstImperf) pn } ;
VPTense pol (VPCond Anter) (AgPes n p) =>
{ inf = verb.s ! VF pol (PPast PstImperf) p n } ;
VPImp pol n => { inf = verb.s ! Imp pol n} ;
VVForm (AgPes n p) =>
{inf = verb.s ! Vvform (AgPes n p)} ;
VPSteml => { inf = verb.s ! Rootl};
VPStem2 => { inf = verb.s ! Root2}
¥
obj = {s = [1 ; a = defaultAgrPes} ;
comp = \\_ => [];
vComp = \\_ => [] ;

embComp = [];

inf = verb.s ! Inf;
adv = [];

rs

This operation (indicated by keyword oper in the above code) converts a verb
(a morphological category) to a verb phrase (a syntactic category). At the
morphological level, Persian verbs inflect for tense present/past/future,
aspect perfective/imperfective/aorist, polarity positive/negative, per-
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son 1st/2nd/3rd, and number Sg/P1. All these morphological forms are
stored in an inflection table at the morphological level, and are used in this
operation to make different forms at the verb phrase level. For example, the
boldfaced line in the above code builds a part of the inflection table s. This
part stores the forms of the verb that correspond to the (Present, Simul)
combination of tense and anteriority, and all possible combinations of polar-
ity and agreement (represented by variables ‘pol’ for polarity and AgPes n
p for agreement).

All the complement fields of this verb phrase are left blank or initialized to
default values. These complements are provided through other verb phrase
construction functions including but not limited to the followings:

fun ComplVV : VV -> VP -> VP ;

g9 ualed oo 5/ (aru) mir xurathad baduid, want to run
fun ComplVS : VS -> S -> VP ;

393 o 3l W& oo ) (amr) mir guiid amwr mir durd, say that she runs
fun ComplVQ : VQ -> QS -> VP ;

399 (o0 S A sl waad o gl (amur) dr tjab amist ceh kisi:

mirdod , wonder who runs

These functions enrich the verb phrase by providing complements. The re-

sulting verb phrase is then used in making clauses, which is discussed in
section 4.3.5.

4.3.3 Adjectival Phrase

In our construction an adjectival phrase has the following structure:
lincat AP = {s : Ezafe => Str ; adv : Str} ;

Again s stores different forms corresponding to the parameters: bEzafe (be-
fore Ezafe), aEzafe (after Ezafe), and enClic (enclitic). adv is a string field
which stores the corresponding form, which is used when an adjective is used
as an adverb. Adjectival phrases are constructed from the morphological cat-
egory adjective (A) through different construction functions. The simplest
one is:

fun PositA : A -> AP ; -- X, garam , warm

This function simply converts the morphological category adjective A to the
syntactic category adjectival phrase AP. Its linearization rule for Persian is
very simple because an adjective and an adjectival phrase have the same
structure. This is as simple as given below:

lin PositA a = a ;
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Further, it is possible to construct adjectival phrases from other categories.
We have one function for each corresponding construction including the fol-
lowings:

fun ComparA : A -> NP -> AP ;

oo ol J:‘\“; garam tar aiz man , warmer than I
fun AdjOrd : Ord -> AP ;

oy aX garam trim, warmest

fun CAdvAP : CAdv -> AP -> NP -> AP ;

Ol salla <o beh jailbi: jamn, as cool as John
fun AdAP : AdA -> AP -> AP ;

0 aS oba yitlir garam, very warm

4.3.4 Adverbs and other Closed Categories

Adverbs are made at morphological level, but it is also possible to construct
them at syntactic level form other categories, for example from adjectives.
We have separate construction functions for adverbs and other closed cate-
gories e.g. pronouns, quantifiers, etc. A few of them are listed here:

fun PositAdvAdj : A -> Adv ;
w2X 4 beh garami: , warmly
fun PossPron : Pron -> Quant ;
oo s 6, (xameeh ii) man, my (house)
fun AdvIP : IP -> Adv -> IP ;
osly s3 S 4 ceh kisit dar parrizs, who in Paris

4.3.5 Clauses

While a phrase is a single word or a group of grammatically related words,
a clause is a single phrase or a group of phrases. Another difference is that
a clause may have both a subject and a predicate of its own, while a phrase
cannot have both at the same time. Though, sometimes it is possible that a
clause does not have any subject at all, and is only composed of a verb phrase.

Structure: In our construction a clause has the following structure:

lincat Clause : Type = {s : VPTense => Polarity =>
Order => Str} ;

Where
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Param VPHTense = VPres |VPas |VFut |VPerfPres
| VPerfPast |VPerfFut|VCondSimul
|VCondAnter ;

's' stores clauses with variable tense, polarity and order (declarative/
interrogative), which are fixed at the sentence level. The GF resource
grammar API tense system covers only 8 possibilities through the combina-
tion of four tenses (present, past, future and conditional) and two anteriorities
(anter and simul). The common API tense system is not adequate for Persian
tense system - which is structured around tense, aspect, and mood. However,
in our current implementation we stick to the common API tense system,
and thus cover only eight possibilities. A better approach is to implement
the full tense system of Persian and then map it to the common resource
API tense system. This approach has been applied in the implementation of
Urdu [Shafqgat et al., 2010] and Punjabi [Shafqat et al., 2011] tense systems.

Construction: A clause is constructed through different clause construction
functions depending on the constituents of a clause. The most important
construction is from a noun phrase NP and a verb phrase VP through the
following function:

fun PredVP : NP -> VP -> C1 ;
33y = 81y yla jam rath mimruid, John walks

And its linearization rule for Persian is:

lin PredVP np vp = mkClause np vp ;
Where

oper mkClause : NP -> VP -> Clause = \np,vp -> {
s = \\vt,pol,ord =>
let
subj = np.s ! NPC bEzafe;
agr = np.a ;
vps = case <pol,vt> of {
<Pos,VPres> =>
vp.s ! VPTense Pos (VPPres Simul) agr ;
<Neg,VPres> =>
vp.s ! VPTense Neg (VPPres Simul) agr ;
<Pos,VPerfPres>=>
vp.s ! VPTense Pos (VPPres Anter) agr;
<Neg,VPerfPres> =>
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vp.s ! VPTense Neg (VPPres Anter) agr;
<Pos,VPast> =>
vp.s ! VPTense Pos (VPPast Simul) agr ;
<Neg,VPast> =>
vp.s ! VPTense Neg (VPPast Simul) agr ;
<Pos,VPerfPast>=>
vp.s ! VPTense Pos (VPPast Anter) agr;
<Neg,VPerfPast>=>
vp.s !VPTense Neg (VPPast Anter) agr;
<Pos,VFut> => case vp.wish of {

True => vp.s ! VPTense Pos (VPPres Simul) agr ;

False => vp.s ! VPTense Pos (VPFutr Simul) agr};
<Neg,VFut> => case vp.wish of {
True => vp.s ! VPTense Neg (VPPres Simul) agr;
False => vp.s ! VPTense Neg (VPFutrSimul) agr};
<Pos,VPerfFut> => case vp.wish of {
True => vp.s ! VPTense Pos (VPPres Anter) agr ;
False => vp.s ! VPTense Pos (VPFutr Anter) agrl};
<Neg,VPerfFut> => case vp.wish of {
True => vp.s ! VPTense Neg (VPPres Anter) agr ;
False => vp.s ! VPTense Neg (VPFutr Anter) agrl};
<Pos,VCondSimul> =>
vp.s ! VPTense Pos (VPCond Simul) agr;
<Neg,VCondSimul> =>
vp.s ! VPTense Neg (VPCond Simul) agr;
<Pos,VCondAnter> =>
vp.s ! VPTense Pos (VPCond Anter) agr;
<Neg,VCondAnter> =>
vp.s ! VPTense Neg (VPCond Anter) agr };
quest = case ord of

{ 0Dir => []; OQuest => "Li" };

in

quest ++ subj ++ vp.adv ++ vp.comp ! np.a ++ vp.obj.s ++

vps.inf ++ vp.vComp ! np.a ++ vp.embComp

}s

This operation takes a noun phrase NP and a verb phrase VP and constructs
a clause with variable tense, polarity and order. Note how agreement infor-
mation of the noun phrase (i.e. np.a in the above code) is used to select the
appropriate form of the verb phrase. This is done to ensure the subject-verb
agreement. The let statement stores different constituents of a verb phrase
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in different variables. Once we have all these constituents, they can be com-
bined with the subject noun phrase in order to make a clause (see boldfaced
code segment). Also note that in the declarative clauses the bEzafe (before
Ezafe) form of the subject noun phrase (i.e. subj in the above code) is used.
As an example, if the noun phrase (John) and the verb phrase (walk) were
inputs to the above function, the output would be the following clause (only
a portion of the full clause is shown):

s . VPres => Pos => 0Dir => 45, gs= sy ola
—-- jam rath mi: rw:d , John walks
s . VPres => Pos => 0OQuest => 4y, o= sl la Ui
-- aiiar jamn rath mir ruid, Does John walk?
s . VPres => Neg => 0ODir => 4y, il ol
—-- jaun rath nami: ruid, John does not walk.
s . VPres => Neg => OQuest => 4y, wisl, yla Li
-- aiiar jamn rath nami: ru:d, Does John not walk?
s . VPast => Pos => 0Dir => &i,sl, ola
-- jam ra:h raft , John walked.
s . VPast => Pos => 0Quest => cid,sl, ,lali
—-— adi:ar jamn ,razh raft, Did John walk?
s . VPast => Neg => 0Dir => «i)islyola
-- jamn ra:h nraft, John did not walk.
s . VPast => Neg => OQuest => cidyisly la Li
-- aza: jamn rath nraft, Did John not walk?
s . VFut => Pos => ODir => &, salea sl ola
-- jam rath xurathd raft , John will walk.
s . VFut => Pos => OQuest = &d) saleaol, Hla Li
-- adi:ar jamn rath xuiathd raft , Will John walk?
s . VFut => Neg => ODir => o, saleaisl, gla
—-- jaumn ra:h nxwathd raft , John will walk.
s . VFut => Neg => OQuest => &, aalsaisl,y yla Li
-— adi:ar jamn rath nxuiazhd raft ,Wwill John not walk?
s . VPerfPres => Pos => 0Dir => cuwl &y sly ola
-- jam ra:h raft a:st , John has walked.
s . VPerfPres => Pos => OQuest => cuwl cudyely ola L
—-— ai:ar jamn razh raft aist , Has John walked?
s . VPerfPres => Neg => 0Dir => cuul cédyisl, gla
-- jam ra:h nrft azst , John has not walked.
s . VPerfPres => Neg => OQuest => owwul cdyislyla L
-- aia: jamn rath nraft aist , Has John walked?
s . VPerfPast => Pos => 0Dir =>ci,sly ola e

63



-- jam ra:h raft buid , John had walked.
s . VPerfPast => Pos => OQuest => ug cdysly ola L
—-— adi:ar jamn razh raft buid , Had John walked?
s . VPerfPast => Neg => 0Dir => &idyisly la ae
-- jam ra:h nraft bu:d , John had not walked.
s . VPerfPast => Neg => OQuest => up cdyislyola
—-— aia: jamn ra:h nraft buixd , Had John not walked?
s . VPerfFut => Pos => 0Dir => cwwl cdysly ola
-- jam ra:h raft azst , John will has walked.
s . VPerfFut => Pos => 0OQuest => cuul oidysly ola L
-- adi:ar jamn razh raft aist ,Will John has walked?

This covers only one way of making clauses, there exist others as well, for
example:

fun PredSCVP : SC -> VP -> C1 ;
ol oA 89y o 9l K ol arim kh aor mir ruid xu:b
amst,it is good that she goes.

4.3.6 Sentences

As mentioned and shown previously, a clause has variable tense, polarity,
and order. Fixing these parameters results in declarative sentences. This is
done through different functions, where the most important one is as follows:

fun UseCl : Temp -> Pol -> C1 -> S ;

The parameter Temp is a combination of two parameters: one for tense
and the other for anteriority. Thus, the function UseCl takes tense, anteri-
ority, polarity and a clause as its input and produces a sentence as output.
Therefore, if we fix the variable features of the example clause given in the
Clause section, we will get the following sentence - where tense is fixed to
simple present, anteriority to simul, and polarity to positive.

S . 39y e sly ula, jam rath mir ruid , John walks

This shows how we can make declarative sentences. Other types of sen-
tences, i.e. interrogative sentences and relative sentences are built through
the following functions respectively:

UseQCl : Temp -> Pol -> QC1 -> QS ;

UseRC1 : Temp -> Pol -> RCl1 -> RS ;
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4.4 An Example

We give an example to demonstrate how our Persian resource grammar works
at morphology and syntax levels. Consider the translation of the following
sentence from English to Persian.

"He lives in my house”

Figure 4.1 shows the automatically generated parse tree of the above sen-
tence. At the lowest level we have the lexical entries. These lexical entries

PredVP : Cl

/N

UsePron : NP AdvVP: VP
|
he_Pron : Pron UseV : VP PrepNP : Adv
| T
live_V:V in_Prep : Prep DetCN : NP
// \\
DetQuant : Det UseN : CN
— |
PossPron : Quant NumSg : Num house_N : N
i_Pron : Pron

Figure 4.1: Parse Tree

are used to construct different syntactic categories. These constructions are
made according to the grammatical rules, which are declared at the abstract-
level. For example the category noun phrase NP can be built from a Det
(determiner) and a CN (common noun). In the abstract syntax we have the
following rule for this construction:

fun DetCN : Det -> CN -> NP ;

Our goal, as a resource grammar developer, is to provide the correct lin-
earization rule for this abstract tree-building function in Persian. This is
achieved through implementation of the concrete syntax (described in the
syntax section) for Persian. The morphological part ensures that the correct
forms of words are created, while the syntactical part handles other gram-
matical features such as agreement, word order, etc. Figure 4.2 shows an
automatically generated word alignments for the example sentence: “he lives
in my house”. The language pair is (English, Persian).
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lives 59
m & GlAa
my oy

house . ..

Figure 4.2: Word Alignments

4.5 Coverage and Evaluation

Our Persian resource grammar has 44 different categories and 190 syntax
functions to cover different syntactic constructions. This covers a fair enough
part of a language but not everything. The reason for not being able to cover
the whole language is the chosen approach of a common abstract syntax for a
set of languages in the resource grammar library. In principle, this approach
makes it impossible to cover every aspect of every language. An example
missing construction for Persian is the causative construction. Such missing
constructions are supposed to be implemented in an extra language specific
module, which is one direction for future work.

Testing a resource grammar is different from testing NLP applications in
general, where testing is done against some text corpus. Testing resource
grammars is much like testing software libraries [] In this type
of testing, a library is tested by developing some application grammars on top
of the resource grammars. Phrasebook [E{anta et al., 2012] is a multilingual
application grammar that was developed as part of the MOLTO-Project.
This application grammar has support for 15 languages. In order to evaluate
our resource grammar we have added support for Persian to it. We achieved
satisfactory results when a test case of 250 examples was generated. The
application is open to test the accuracy and quality of translations, and is
available on the MOLTO homepageH. Another possible way of testing is to

3http:/ /www.molto-project.eu/
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generate a set of trees, linearize them, and observe their correctness. This
approach has been applied to produce examples for the synopsisH document,
which contains a set of translated examples. The grammar was released when
we reached a satisfactory performance level, with some known issues reported
in the library documentation.

4.6 Related and Future Work

A Persian computational grammar was reported in [Bahrani et al., 2011].
This grammar is based on Generalized Phrase Structure Grammar (GPSG)
model. Considering nouns, verbs, adjectives, etc. as basic structures, X-
bar theory is used to define noun phrases, verb phrases, adjectival phrases,
etc. This grammar is monolingual and can be used in applications, which
need a syntactic analysis of the language. On the contrary, the grammar
we developed is multilingual and can be used to develop different kinds of
application grammars, ranging from text-translators to language generation
applications, dialogue systems, etc.

[Miiller and Ghayoomi, 2010] reported a Persian grammar implemented
in TRALE system [Meurers et al., 2002]. The grammar is based on the Head-
driven Phrase Structure Grammar (HPSG) and is still under construction.
Its coverage is limited due to the missing lexical items (i.e. verbs, numerals,
clitic forms of a copula, etc.)

As mentioned previously, the reported grammar does not cover all aspects
of Persian. One direction for future work is to explore missing constructions
and implement them in a separate language specific module. Another possi-
ble direction for future work is the development of more application grammars
on top of the reported resource grammar.

4http://www.grammaticalframework.org/lib/doc/synopsis.html
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Chapter 5

Lexical Resources

This chapter describes the development of different types of lexicons in GF.
We use data from existing lexical resources (e.g. Dictionaries and WordNets)
to produce uni-sense and multi-sense morphological lexicons. The size of
these lexicons ranges from 10 to 50 thousand lemmas.
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5.1 Introduction

The quality and coverage of a natural language processing (NLP) appli-
cation depend hugely on the quality and coverage of its lexical resources.
Wordsﬁ], as lexical units, play the role of basic building blocks. These build-
ing blocks should be in a proper shape and order if one is to achieve high
quality in NLP applications. In the recent past, there have been many at-
tempts to build reusable high quality lexical resources. Examples include the
Princeton WordNet [Miller, 1995], the EuroWordNet [EuroWordNet, 1996],
the Indo-WordNet [Bhattacharyya, 2010], and the VerbNet [Schuler, 2005]
(see the Global Word-Net association® for a full list of such resources). Even
though these resources provide many valuable semantic and lexical infor-
mation about words and their relationships, what they do not provide is
full-form morphological lexicons. They might have separate morphological
processing functions to analyze the words, but these functions are normally
not intended to be used for word-forms generation.

The GF resource grammar library API provides special functions called
smart paradigms [Détrez and Ranta, 2012], which can be used to build full-
form mono-lingual or multi-lingual GF lexicons. These paradigms take one
or more forms of a word, try to analyze it, and build full-form inflection
tables using different language-dependent word-form generation rules. In
this chapter, we report two types of GF' lexicons: Mono-Lingual and Multi-
Lingual. In the next section, first we describe the structure and development
of a GF lexicon in general, which is followed by the development of a mono-
lingual and a number of multi-lingual lexicons.

5.2 GF Lexicons

As mentioned in the previous chapters, every GF grammar has two levels of
representation: abstract and concrete. This applies to both the syntactical
and the lexical modules. In the abstract representation of a lexical module,
the words are declared as constants of a particular lexical category (i.e. noun,
verb, adjective etc.). This representation is independent of any language,
however for the purpose of convenience, the constant names are chosen to
be in English. As an example, consider the following small segment from an
abstract representation of a GF lexicon.

'The notion of a ’word’ in itself is fuzzy, here we take it as a smallest unit that we
process at the lexical level.
2http://www.globalwordnet.org/gwa/wordnet_ table.html
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Infinitive | Present 3Sg | Past Past Participle | Present Participle
learn learns learned | learned learning

Table 5.1: Inflectional forms of the verb ’learn’

abstract DictAbs = {

fun boy N : N ;

fun lesson N : N ;
fun tall A : A ;
fun learn V2 : V2 ;
}

The concrete representation maps every lexical constant to a full-form inflec-
tion table, computed by applying a smart paradigm to one or more forms of
a word. Now consider the following English concrete lexicon segment for the
above given abstract lexicon segment:

concrete DictEng of DictAbs = {
lin boy_N = mkN "boy" ;
lin lesson_N = mkN "lesson" ;
lin tall A = mkA "tall" ;
lin learn V2 = mkV2 (mkV "learn") ;
}

Here, mkN, mkA, and mkV are smart paradigms. They take the canoni-
cal form of a word and produce full-form inflection tables. For example the
paradigm mkV in the above code takes the infinitive form of the verb "learn”
and produces its inflectional forms given in Table 5.1.

GF allows multiple concrete representations for a single abstract represen-
tation. In this setting, the abstract representation acts as an interlingua and
together with the parallel concrete representations results into a multi-lingual
translation lexicon. For example, we can have the following parallel Hindi
representation of the above given abstract representation:

concrete DictHin of DictAbs = {
lin boy_N = mkN "larka:" ;
lin lesson_N = mkN "sabak" ;
lin tall A = mkA "lamba:" ;
lin learn V2 = mkV2 (mkV "si:khna:") ;
}
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The API uses the same paradigm names for all languages as far as possible,
although the inflection tables very from language to language. (The actual
Hindi lexicon uses the Devanagari script encoded in UTF-8.)

5.3 Monolingual Lexicons

The first comprehensive mono-lingual lexicon for English reported in GF
was based on the Oxford Advanced Learner’s dictionary®. This lexicon has
around 43000 lemmas. The Princeton Word-Net [Miller, 1995], on the other
hand, provides a much bigger repository of English lexical data. We have
extended our previous English lexicon to around 64700 entries by adding
extra nouns, adjectives and adverbs from the Princeton WordNet data.

5.4 Multi-lingual Lexicons

As described previously, considering the abstract representation as an inter-
lingua, it becomes possible to have multiple parallel concrete representations,
which results into multi-lingual lexicons. Because words can have multiple
senses, and it is often very hard to find one-to-one word mappings between
languages, we develop two different types of multi-lingual lexicons: Uni-Sense
and Multi-Sense. These lexicons have different purposes and uses given in
the following subsections.

5.4.1 Uni-Sense Lexicons

In a uni-sense lexicon each source word is restricted to represent one particu-
lar sense of the word, and hence it becomes easier to map it to one particular
word in the target language. These type of lexicons are useful for building
domain specific NLP applications.

The abstract representation of our uni-sense lexicon has around 64700
words, which are based on the Oxford Advanced Learner’s Dictionary, and
the Princeton WordNet. During the development of the concrete lexicons a
guiding principle was to reuse the existing lexical resources of these languages
as much as possible. So, the parallel data for building Hindi lexicon was
taken from the Hindi WordNet [Jha et al., 2001], and for Urdu, the data was
extracted from different resources including Waseem Siddiqi’s English-Urdu
dictionaryg. Table 5.2 gives statistics about the coverage of both lexicons.

3http://oald8.oxfordlearnersdictionaries.com/
freely available for downloading and editing at
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Lang | Abstract | Hindi | Urdu
Size | 64700 | 33600 | 30000

Table 5.2: Lexicon Coverage Statistics

In situations, when there were one-to-many mappings from source-to-
target language an obvious issue was the choice of a lexical entry. Currently
for the English-Hindi lexicon we solved this issue by simply selecting the first
Hindi word (essentially random) and later tailoring it to a particular domain.
For the same reason, we have developed two different versions of the Hindi
lexicon: One tailored to the Wall Street Journal (WSJ), and the other to the
mathematics domain. However, it is important to mention that the tailoring
was done during an experiment and the percentage of this tailoring is very
low.

Another issue was that it can not always be guaranteed that the smart
paradigm will predict the correct lexical paradigm for word-forms generation,
and this can result in irregularities and/or bugs. In the case of Urdu, one
such example is the noun (gwui,’a:dmi:’;man) versus (=, kursi:’ chair).
The Urdu smart paradigm (mkN) tries to guess the gender of a noun from
its ending. Now, both these nouns end at ', but (s, ’a:dmi:’ man) is
masculine while (s <, ’kursi:’ chair) is feminine. The default behavior will
predict (gwdi,’a:dmi:’;man) to be feminine and will result into bugs at the
syntax level. FEither such entries need to be corrected manually (i.e. in
this case by replacing one argument mkN (i.e. mkN ”4wusi”) with the two
arguments version (i.e. mkN " weai” masculine)), or we need some other
automatic solution. Currently, we put such issues in the ’known-issues’ list
and leave them for future.

5.4.2 Multi-Sense Lexicons

A multi-sense lexicon is a more comprehensive lexicon and contains multiple
senses of words and their translations to other languages. This type of lex-
icons can be used for open-domain tasks such as arbitrary text translation.
These multi-sense lexicons have been developed using data from the Prince-
ton WordNet and the Universal WordNet [de Melo and Weikum, 2009]. The
original Princeton WordNet defines a set of word senses, and the Universal
WordNet maps them to different languages. In this multilingual scenario, the
Princeton WordNet senses can be seen as an abstract representation, while

http://www.scribd.com/doc/8509778 /English-to-Urdu-Dictionary
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the Universal WordNet mappings can be seen as concrete representation of
those senses in different languages. This section briefly describes the exper-
iment we did to build one abstract and multiple concrete GF lexicons for
a number of languages including German, French, Finnish, Swedish, Hindi,
and Bulgarian. The method is very general and can be used to build similar
lexicon for other languages.

Abstract Lexicon

The Princeton WordNet data is distributed in the form of different database
files. For each of the four lexical categories (i.e. noun, verb, adjective, and
adverb), two files named ’index.pos’ and 'data.pos’ are provided, where "pos’
is either noun, verb, adj or adv. Each of the ’index.pos’ files contains all
words, including synonyms of the words, found in the corresponding part
of speech category. Each of the ’data.pos’ files contains data about unique
senses belonging to the corresponding part of speech category. For our pur-
poses, there were two possible choices to build an abstract representation of
the lexicon:

1. To include all words of the four lexical categories, and also their syn-
onyms (i.e. to build the lexicon from ’index.pos’ files)

2. To include only unique senses of the four categories with one word
per sense, but not the synonyms (i.e. to build the lexicon from the
'data.pos’ files)

To better understand this difference, consider the words ’brother” and ’buddy’.
The word ’brother’ has five senses with sense offsets '08111676°, 08112052,
‘08112961, '08112265" and '08111905” in the Princeton WordNet 1.7.1, while
the word "buddy’ has only one sense with the sense offset '08112961". Choos-
ing option (1) means that we have to include the following entries in our
abstract lexicon.

brother_08111676_N
brother_08112052_N
brother_08112961 N
brother_ 08112265 N
brother_08111905_N
buddy_08112961 N

We can see that the sense with the offset '08112961° is duplicated in the
lexicon: once with the lemma "brother’ and then with the lemma "buddy’.
However, if we choose option (2), we end up with the following entries.
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brother_08111676_N
brother_08112052_N
brother 08112265 N
brother_08111905_N
buddy_08112961_N

Since the file '"data.noun’ lists the unique senses rather than the words, their
will be no duplication of the senses. However, the choice has an obvious effect
on the lexicon coverage, and depending on whether we want to use it as a
parsing or as a linearization lexicon, the choice becomes critical. Currently,
we choose option (2) for the following reason:

The Universal WordNet provides mappings for synsets (i.e. unique senses)
but not for the individual synonyms of the synsets. If we choose option
(1), as mentioned previously, we have to list all synonyms in our abstract
representation. But, as translations are available only for synsets, we have
to put the same translation against each of the synonym of the synset in our
concrete representations. This will not gain anything but will increase the
size of the lexicon and hence may have a negative impact on the processing
speed.

Our abstract GF lexicon covers 91516 synsets out of around 111,273 synsets
in the WordNet 1.7.1. We exclude some of the synsets with multi-word
lemmas. We consider them as of syntactic categories, and hence deal with
them at the syntax level. Here, we give a small segment of our abstract GF
lexicon.

abstract LinkedDictAbs = Cat *x {

fun consentaneous_00526696_A : A ;
fun consecutive_01624944 A : A ;

fun consequently_00061939_Adv : Adv ;
fun abruptly_00060956_Adv : Adv ;
fun consequence_09378924 N : N ;

fun consolidation_ 00943406 _N : N
fun consent_ 05596596 N : N ;

fun conservation_06171333_ N : N ;

fun conspire_00562077_V : V ;

fun sing 013625563 _V2 : V2 ;

75



The first line in the above given code states that the module "LinkedDict Abs’
is an abstract representation (note the keyword ’abstract’). This module
extends (achieved by "**’ operator) another module labeled ’Cat?’, which in
this case, has definitions for the morphological categories ’A’, ’Adv’, ’N” and
"V'. These categories correspond to the 'adjective’, ’adverb’, 'noun’, and 'verb’
categories in the WordNet respectively. However, note that in GF resource
grammars we have a much fine-grained morphological division for verbs. We
sub-categorize them according to their valencies i.e V' is for intransitive, and
'V2' for transitive verbs (we refer to [Bringert et al., 2011 for more details
on this division).

Each entry in this module is of the following general type:

fun lemma_senseOffset_ t : t ;

Keyword ’fun’ declares each entry as a function of the type 't The function
name is composed of lemma, sense offset and a type t’, where lemma and
sense offset are same as in the Princeton WordNet, while 't” is one of the
morphological types in GF resource grammars. This abstract representation
will serve as a pivot for all concrete representations, which are described next.

Concrete Lexicons

We build the concrete representations for different languages using the trans-
lations obtained from the Universal WordNet data and GF morphological
paradigms [Détrez and Ranta, 2012, Bringert et al., 2011]. The Universal
WordNet translations are tagged with a sense offset from WordNet 3.00 and
also with a confidence score. As an example consider the following segment
from the Universal WorNet data, showing German translations for the noun
synset with offset 13810818" and lemma 'rest’ (in the sense of 'remainder’).

n13810818 Rest 1.052756
n13810818 Abbrand 0.95462
n13810818 Ruckstand 0.924376
n13810818 Restbetrag 0.662388
n13810818 Restauflage 0.446788
n13810818 Restglied 0.446788

5This module has definitions of different morphological and syntactic categories in the
GF resource grammar library.

6In our concrete lexicons we match them to WordNet 1.7.1 for the reason that in our
recent experiments, we are using these lexicons to build an arbitrary text translator. This
translation system is using an external Word-Sense disambiguation tool, which is based on
WordNet 1.7.1. However, this can easily be mapped back and forth to the other WordNet
versions.
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n13810818 Restbestand 0.446788
n13810818 Residuum 0.409192

Each entry is of the following general type:
posSense0ffset translation confidence-score

In cases, where we have more than one candidate translations for the same
sense (as in the case of 'rest’), we select the best one (i.e. with the maxi-
mum confidence score) and put it in the concrete grammar. Next, we give a
small segment from the German concrete lexicon for the above given abstract
lexicon segment.

concrete LinkedDictGer of LinkedDictAbs = CatGer ** open
ParadigmsGer, IrregGer,Prelude in {

lin consentaneous_00526696_A = mkA "einstimmig"

lin consecutive_01624944 A = mkA "aufeinanderfolgend" ;
lin consequently_00061939_Adv = mkAdv "infolgedessen" ;
lin abruptly_00060956_Adv = mkAdv "gech" ;

lin consequence_09378924_N = mkN "Auswirkung" ;

lin consolidation_00943406_N = mkN "Konsolidierung" ;
lin consent_05596596_N = mkN "Zustimmung" ;

lin conservation_ 06171333_N = mkN "Konservierung" ;

lin conspire_00562077_V = mkV "anzetteln" ;

lin sing 01362553_V2 = mkV2 (mkV "singen" ) ;

The first line declares 'LinkedDictGer’ to be the concrete representation
of the previously defined abstract representation (note the keyword ’concrete’
at the start of the line). Each entry in this representation is of the following
general type:

lin lemma_senseQffset_t = paradigmName "translation" ;

Keyword ’lin” declares each entry to be a linearization of the corresponding
function in the abstract representation. paradigmName’ is one of the mor-
phological paradigms defined in the "ParadigmsGer’ module. So in the above

code, 'mkA’, 'mkAdv’, 'mkN’, 'mkV’ and 'mkV2’ are the German morpho-
logical paradigms? for different lexical categories (i.e. ’adjective’, ’adverb’,

"See [Bringert et al., 2011 for more details on these paradigms
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‘noun’, ’intransitive verb’, and ’transitive verb’ respectively). ’translation’
in double quotes is the best possible translation obtained from the Universal
WordNet. This translation is passed to a paradigm as a base word, which
then builds a full-form inflection table.

Concrete lexicons for all other languages were developed using the same
procedure. Table 5.3 gives statistics about the coverage of these lexicons.
The Finnish lexicon was later revised and extended using the data from the
Finnish WordNet [Lindén and Carlson, 2010].

Language | Number of entries
Abstract 91516
German 49439
French 38261
Finnish 27673
Swedish 23862
Hindi 16654
Bulgarian 12425

Table 5.3: Lexicon Coverage Statistics
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Part 111

Applications
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Chapter 6

Computational evidence that
Hindi and Urdu share a
grammar but not the lexicon

This chapter describes the mechanical development of a Hindi resource gram-
mar starting from an Urdu resource grammar. It also gives a detailed analysis
of the difference between Hindi and Urdu resource grammars at different lev-
els: morphology, syntax, and script. At the end, it describes the evaluation
experiments that resulted in the conclusions that Hindi and Urdu lexicons
differ in 18% of the basic words, in 31% of tourist phrases, and in 92% of
school mathematics terms.

The layout has been revised.
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Abstract: Hindi and Urdu share a grammar and a basic vocabulary, but
are often mutually unintelligible because they use different words in higher
registers and sometimes even in quite ordinary situations. We report compu-
tational translation evidence of this unusual relationship (it differs from the
usual pattern, that related languages share the advanced vocabulary and dif-
fer in the basics). We took a GF resource grammar for Urdu and adapted it
mechanically for Hindi, changing essentially only the script (Urdu is written
in Perso-Arabic, and Hindi in Devanagari) and the lexicon where needed. In
evaluation, the Urdu grammar and its Hindi twin either both correctly trans-
lated an English sentence, or failed in exactly the same grammatical way,
thus confirming computationally that Hindi andUrdu share a grammar. But
the evaluation also found that the Hindi and Urdu lexicons differed in 18% of
the basic words, in 31% of tourist phrases, and in 92% of school mathematics
terms.

Keywords: Grammatical Framework, Resource Grammars, Application
Grammars

6.1 Background facts about Hindi and Urdu

Hindi is the national language of India and Urdu that of Pakistan, though
neither is the native language of a majority in its country.

‘Hindi’ is a very loose term covering widely varying dialects. In this wide
sense, Hindi has 422 million speakers according to [Census-India, 2001]. This
census also gives the number of native speakers of ‘Standard Hindi’ as 258
million. Official Hindi now tends to be Sanskritised, but Hindi has borrowed
from both Sanskrit and Perso-Arabic, giving it multiple forms, and making
Standard Hindi hard to define. To complete the ‘national language’ picture,
note that Hindi is not understood in several parts of India [Agnihotri, 2007,
and that it competes with English as lingua franca.

It is easier, for several reasons, to talk of standard Urdu, given as the
native language of 51 million in India by [Census-India, 2001], and as that of
10 million in Pakistan by [Census-Pakistan, 1998]. Urdu has always drawn
its advanced vocabulary only from Perso-Arabic, and does not have the same
form problem as Hindi. It is the official language and lingua franca of Pak-
istan, a nation now of 180 million, though we note that Urdu’s domination
too is contested, indeed resented in parts of the country [Sarwat, 2006].

Hindi and Urdu ‘share the same grammar and most of the basic vocabu-
lary of everyday speech’ [Flagship, 2012]. This common base is recognized,
and known variously as ‘Hindustani’ or ‘Bazaar language’ [Chand, 1944,
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Naim, 1999]. But, ‘for attitudinal reasons. it has not been given any sta-
tus in Indian or Pakistani society’ [Kachru, 2006]. Hindi-Urdu is the fourth
or fifth largest language in the world (after English, Mandarin, Spanish and
perhaps Arabic), and is widely spoken by the South Asian diaspora in North
America, Europe and South Africa.

6.1.1 History: Hindustani, Urdu, Hindi

From the 14th century on, a language known as Hindustani developed by
assimilating into Khari Boli, a dialect of the Delhi region, some of the Perso-
Arabic vocabulary of invaders. Urdu evolved from Hindustani by further
copious borrowing from Persian and some Arabic, and is written using the
Perso-Arabic alphabet. It dates from the late 18th century. Hindi, from
the late 19th century, also evolved from Hindustani, but by borrowing from
Sanskrit. It is written in a variant of the Devanagari script used for Sanskrit.
But the Hindi/Urdu has base retained its character: ‘the common spoken
variety of both Hindi and Urdu is close to Hindustani, i.e., devoid of heavy
borrowings from either Sanskrit or Perso-Arabic’ [Kachru, 2006].

6.1.2 One language or two?

Hindi and Urdu are ‘one language, two scripts’, according to a slogan over
the newspaper article [Joshi, 2012]. The lexicons show that neither Hindi
nor Urdu satisfies that slogan. Hindustani does, by definition, but is limited
to the shared part of the divergent lexicons of Hindi and Urdu.

[Flagship, 2012] recognizes greater divergence: it says Hindi and Urdu
‘have developed as two separate languages in terms of script, higher vo-
cabulary, and cultural ambiance’. Gopi Chand Narang, in his preface to
[Schmidt, 2004] stresses the lexical aspect: ‘both Hindi and Urdu share the
same Indic base ... but at the lexical level they have borrowed so extensively
from different sources (Urdu from Arabic and Persian, and Hindi from San-
skrit) that in actual practice and usage each has developed into an individual
language’.

But lexical differences are not quite the whole story. [Naim, 1999] lists
several subtle morphological differences between Hindi and Urdu, and some
quite marked phonological ones. Most Hindi speakers cannot pronounce the
Urdu sounds that occur in Perso-Arabic loan words: q (unvoiced uvular
plosive), x (unvoiced velar fricative), G (voiced velar fricative), and some
final consonant clusters, while Urdu speakers replace the n (retroflex nasal)
of Hindi by n, and have trouble with many Hindi consonant clusters.
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Naim does not think it helps learners to begin with Hindi and Urdu
together. Those who seek a command of the written language, he says,
might as well learn the conventions exclusive to Urdu from the beginning.

Thus there are many learned and differing views on whether Hindi and
Urdu are one or two languages, but nothing has been computationally proved,
to the best of our knowledge. Our work demonstrates computationally that
Hindi and Urdu share a grammar, but that the lexicons diverge hugely be-
yond the basic and general registers. Our as yet first experiments already
give preliminary estimates to questions like ‘How much do Hindi and Urdu
differ in the lexicons?".

Overview Section 6.2 describes Grammatical Framework, the tool used in
this experiment, and Section 6.3 lists what we report. Section 6.4 describes
the Hindi and Urdu resource grammars, some differences between them, and
how we cope with these differences. Section 6.5 presents the general and
domain-specific lexicons used in this experiment. Evaluation results are given
at the ends of Sections 6.4 and 6.5. Section 6.6 provides context and wraps
up.

This paper uses an IPA style alphabet, with the usual values and conven-
tions. Retroflexed sounds are written with a dot under the letter; t, d, and
r (a flap) are common to Hindi and Urdu, while n and s occur in Sanskritised
Hindi (though many dialects pronounce them n and §). The palatalised spi-
rant § and aspirated stops, shown thus: k®, are common to Hindi and Urdu.
A macron over a vowel denotes a long vowel, and ~, nasalisation. In Hindi
and Urdu, e and o are always long, so the macron is dropped. Finally, we
use fi to mean the nasal homorganic with the following consonant.

6.2 Background: Grammatical Framework

Grammatical Framework (GF) [Ranta, 2004] is a grammar formalisim tool
based on Martin Lof’s [Martin-Lof, 1982] type theory. It has been used to
develop multilingual grammars that can be used for translation. These trans-
lations are not usually for arbitrary sentences, but for those restricted to a
specific domain, such as tourist phrases or school mathematics.

6.2.1 Resource and Application Grammars in GF

The sublanguages of English or Hindi, say, that deal with these specific
domains are described respectively by the (English or Hindi) application
grammars Phrasebook (Caprotti et al 2010, [Ranta et al., 2012] and MGL
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[Caprotti and Saludes, 2012]. But the English Phrasebook and English MGL
share the underlying English (similarly for Hindi). The underlying English
(or Hindi) syntax, morphology, predication, modification, quantification,
etc., are captured in a common general-purpose module called a resource
grammar.

Resource grammars are therefore provided as software libraries, and there
are currently resource grammars for more than twenty five languages in the
GF resource grammar library [Ranta, 2009h]. Developing a resource gram-
mar requires both GF expertise and knowledge of the language. Application
grammars require domain expertise, but are free of the general complexities
of formulating things in English or Hindi. One might say that the resource
grammar describes how to speak the language, while the application gram-
mar describes what there is to say in the particular application domain.

6.2.2 Abstract and Concrete Syntax

Every GF grammar has two levels: abstract syntax and concrete syntax.
Here is an example from Phrasebook.

1. Abstract sentence:
PQuestion (HowFarFrom (ThePlace Station)(ThePlace Airport))

2. Concrete English sentence: How far is the airport from the
station?

3. Concrete Hindustani sentence: steSan se haval adda kitnl
dur ha?

(FEI F EATS AT Al TL A7, S g0 oS 131 (g ponw opidial )

4. Hindustani word order: station from air port how-much far
is?

The abstract sentence is a tree built using functions applied to elements.
These elements are built from categories such as questions, places, and dis-
tances. The concrete syntax for Hindi, say, defines a mapping from the
abstract syntax to the textual representation in Hindi. That is, a concrete
syntax gives rules to linearize the trees of the abstract syntax.

Examples from MGL would have different abstract functions and ele-
ments. In general, the abstract syntax specifies what categories and functions
are available, thus giving language independent semantic constructions.

Separating the tree building rules (abstract syntax) from the linearization
rules (concrete syntax) makes it possible to have multiple concrete syntaxes
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for one abstract. This makes it possible to parse text in one language and
output it in any of the other languages.

Compare the above tree with the resource grammar abstract tree for “How
far is the airport from the station?” to see the difference between resource
and application grammars:

PhrUtt NoPConj (UttQS (UseQCl (TTAnt TPres ASimul) PPos
(QuestIComp (CompIAdv (AdvIAdv how IAdv far Adv)) (DetCN
(DetQuant DefArt NumSg) (AdvCN (UseN airport_N) (PrepNP
from Prep (DetCN (DetQuant DefArt NumSg) (UseN station_N)
))))))) NoVoc

6.3 What we did: build a Hindi GF gram-
mar, compare Hindi/Urdu

We first developed a new grammar for Hindi in the Grammatical Frame-
work (GF) [Ranta, 2011] using an already existing Urdu resource grammar
[Shafgat et al., 2010]. This new Hindi resource grammar is thus the first
thing we report, though it is not in itself the focus of this paper.

Common Code

[ DiffHin J {LEximnHin] [ DiffUrd J[LExianrd]
! | |

[ Hindi Resource Grammar ] ‘ Urdu Resource Grammar ]

Figure 6.1: Hindi/Urdu Functor.

We used a functor style implementation to develop Hindi and Urdu re-
source grammars, which makes it possible to share commonalities between
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two grammars. Figure 6.1 gives a picture of this implementation style. Most
of the syntactic code resides in the ‘common code box’, and the minor syntac-
tical differences (discussed in Section 6.4) are placed in each of the ‘DiffLang
box’. Each resource grammar has its own lexicon. This mechanically proves
that Hindi and Urdu share a grammar and differ almost only in the lexicons.

We evaluated our claim by (1) porting two application grammars to
Hindi and Urdu: MGL, a mathematical grammar library for school mathe-
matics [Caprotti and Saludes, 2012], and a Phrasebook of tourist sentences
[Ranta et al., 2012], (2) randomly producing 80 abstract trees (40 from each
of the Phrasebook, and MGL), (3) linearizing them to both Hindi and Urdu,
and finally checking them either for correctness, or badness (see Section 6.6
for results).

6.4 Differences between Hindi and Urdu in

the Resource Grammars

We started from the script based GF resource grammar for Urdu, and adapted
it for Hindi almost entirely just by re-coding from Urdu to Hindi script. A ba-
sic test vocabulary accompanies the resource grammars, and this was changed
as needed: it turned out that Hindi and Urdu differ up to 18% even in this
basic vocabulary. Section 6.5 deals with the application lexicons.

We do not give any implementation details of these resource grammars
in this paper, as the interesting bits can be found in [Shafgat et al., 2010].
But we describe below resource level differences between Hindi/Urdu, and
strategies to deal with them.

6.4.1 Morphology

Every GF resource grammar provides a basic test lexicon of 450 words,
for which the morphology is programmed by special functions called lexical
paradigms. Our Hindi morphology simply takes the existing Urdu morphol-
ogy and re-codes it for the Devanagari script. Lexical differences mean that
the morphologies are not identical; e.g., Hindi sometimes uses a simple word
where Urdu has a compound word, or vice-versa. But there are no patterns
that occur in only one of the languages, so the test lexicon for Hindi works
with few problems.

We could in principle implement the subtle morphological differences
noted in [Naim, 1999], but we ignored them. That these differences are mi-
nor is shown by the fact that our informants find the resulting Hindi entirely
normal.
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6.4.2 Internal Representation: Sound or Script?

The translation of “How far is the airport from the station?” was written in
IPA, representing the sound of the Hindi/Urdu. It sounds identical in the
two languages, and thus we could label it ‘Hindustani’. An obvious approach
to writing grammars for Hindi/Urdu from scratch would be to represent the
languages internally by sound, so that we would get just one grammar, one
shared lexicon, and differentiated lexicons only for those words that sound
different in Hindi and Urdu. For output, we would then map the IPA to the
Hindi or Urdu script.

But we were starting from [Shafqat et al., 2010], which uses an internal
representation based on written Urdu. It would be a fair sized task to re-
do this in terms of speech, though the result would then be immediately
re-usable for Hindi and might also help capture similarities to other South
Asian languages. We reserve this re-modelling for future work.

So, in the present work, we changed the Urdu grammar to a Hindi gram-
mar merely by replacing written Urdu by written Hindi. This script change
was also done for the basic lexicon, though here some words were indeed
different even spoken. Our parallel grammars therefore give no indication
that Hindi and Urdu often sound identical.

One compensating advantage is that script-based representations avoid
spelling problems. Hindi-Urdu collapses several sound distinctions in Per-
sian, Arabic and Sanskrit. A phonetic transcription would not show these
collapsed distinctions, but the orthography does, because Urdu faithfully
retains the spelling of the original Perso-Arabic words while representing
Sanskrit words phonetically, while Hindi does the reverse. Each language
is faithful to the sources that use the same script. We see that it will not
be entirely trivial to mechanically go from a phonetic representation to a
written one.

Obviously, the more the Hindi and Urdu lexicons overlap, the more the
wasted effort in the parallel method. But as we shall see, the lexicons devi-
ate from each other quite a bit. We have designed an augmented phonetic
representation that keeps track of spelling, for use in a remodelled grammar.

6.4.3 Idiomatic, Gender and Orthographic Differences

In addition to spelling, Hindi and Urdu also have orthographic differences,
not often remarked. Indeed some apparently grammatical differences result
from in fact idiomatic, gender or orthographic differences.

For example, the lexicon might translate the verb “to add” as “jorna” in
Hindi, and as “jame karna” in Urdu. The imperative sentence “add 2 to 3”
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would then be rendered “do ko tIn se joro” in Hindi, and “do ko tIn mé&
jame karo” in Urdu. But the choice between the post-positions “se” and
“m&” is determined not by different grammars for Hindi and Urdu, but by
the post-positional idiom of the chosen verb, “jorna” or “jame karna”, as
can be seen because either sentence works in either language.

A gender difference appears with “war”, rendered in Urdu as “larai”
(fem.). This word works in Hindi as well, but has more a connotation of
“battle”, so we chose instead “safighars” (masc.). The shift from feminine
to masculine is driven by the choice of word, not language.

Orthographic differences next. “He will go” is “vo jaega” in both lan-
guages; in writing, (g STTEAT, K ila ), the final “ga” (T, K) is written
as a separate word in Urdu but not in Hindi. Similarly, “we drank tea” is
“hamne cay pi” in both languages, but in writing, (A7 I W, Lls o &
=), the particle “ne” (7, ) is written as a separate word in Urdu but not
in Hindi.

These differences were handled by a small variant in the code, shown
below. To generate the future tense for Urdu, the predicate is broken into
two parts: finite (fin) and infinite (inf). The inf part stores the actual verb
phrase (here “jae”), and the fin part stores the copula “ga” as shown below.

VPFut=>fin=(vp.s! VPTense VPFutr agr).fin; inf=(vp.s!
VPTense VPFutr agr).inf

For Hindi, these two parts are glued to each other to make them one
word. This word is then stored in the inf part of the predicate and the fin
part is left blank as shown below.

VPFut=>fin=[]; inf=Prelude.glue ((vp.s! VPTense VPFutr
agr).inf) ((vp.s! VPTense VPFutr agr).fin)

Similarly in the ergative “hamne cay pi” (“we drank tea”), Urdu treats
“ham” and “ne” as separate words, while Hindi makes them one. We used
for Urdu, NPErg => ppf ! 0bl ++ "ne" and for Hindi, NPErg => glue
(ppf ! 0Obl) "ne".

6.4.4 Evaluation and Results
With external informants

As described earlier, we randomly generated 80 abstract trees (40 from each
of the Phrasebook, and MGL), linearized them to both Hindi and Urdu.
These linearizations were then given to three independent informants.
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They evaluated the Hindi and Urdu translations generated by our gram-
mars. The informants found 45 sentences to be correct in both Hindi and
Urdu. The other sentences were found understandable but failed grammati-
cally - in exactly the same way in both Hindi and Urdu: nothing the infor-
mants reported could be traced to a grammatical difference between Hindi
and Urdu. For this paper, the point is that all 80 sentences, the badly trans-
lated as well as the correctly translated, offer mechanical confirmation that
Hindi and Urdu share a grammar.

We note for the record that the 35 grammatical failures give a wrong
impression that the grammar is only “45/80” correct. In fact the grammar is
much better: there are only a handful of distinct known constructs that need
to be fixed, such as placement of negation and question words, but these turn
up repeatedly in the evaluation sentences.

A result that has not been the focus of this paper is that we greatly
improved the Urdu grammar of [Shafqat et al., 2010] while developing the
Hindi variant. Errors remain, as noted above.

With internal informants

The second author is a native Urdu speaker, while the first speaks Hindi,
though not as a native. With ourselves as internal informants, we could
rapidly conduct several more extensive informal evaluations. We looked at
300 Phrasebook sentences, 100 MGL sentences, and 100 sentences generated
directly from the resource grammars. We can confirm that for all of these
500 English sentences, the corresponding Urdu and Hindi translations were
understandable and in conformance with Urdu and Hindi grammar (barring
the known errors noted by the external informants).

We note particularly that randomly generated MGL sentences can be
extremely involuted, and that the Hindi and Urdu translations had the same
structure in every case.

6.5 The Lexicons

As we noted in Section 6.1, Urdu has a standard form, but Hindi does not,
though official Hindi increasingly tends to a Sanskritised form. Hindustani
itself counts as ‘Hindi’, and is a neutral form, but has only basic vocabulary, a
complaint already made in [Chand, 1944]. So to go beyond this, Hindi speak-
ers have to choose between one of the higher forms. Elementary mathematics,
for example, can be done in Hindustani or in Sanskritised Hindi, attested by
the NCERT books [NCERT, 2012|, or in English-ised Hindi, which can be
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heard at any high school or university in the Hindi speaking regions.

We arbitrated the choice of Hindi words thus: when we had sources, such
as the NCERT mathematics books or a government phrase book, we used
those. Otherwise, we used [Snell and Weightman, 2003] and [Jha et al., 2001]
to pick the most popular choices.

6.5.1 The general lexicon

Out of 350 entries, our Hindi and Urdu lexicons use the same word in 287
entries, a fraction of 6/7 which can easily be changed by accepting more
Urdu words as Hindi’ or by avoiding them. We note in passing that the
general lexicon is any case often tricky to translate to Hindi-Urdu, as the
cultural ambience is different from the European one where GF started, and
which the test lexicon reflects. Many words (“cousin”, “wine”; etc.) have no
satisfactory single equivalents, but these lexical items still help to check that

the grammars work.

6.5.2 The Phrasebook lexicon

This lexicon has 134 entries, split into 112 words and 22 greetings. For 92
of the words, the Hindi and Urdu entries are the same; these include 42
borrowings from English for names for currencies, (European) countries and
nationalities,and words like “tram” and “bus”. So Hindi and Urdu share
50 of 70 native words, but differ on 20, including days of the week (except
Monday, “somvar” in both Hindi and Urdu). The greetings lexicon has 22
entries, most of which are hard to translate. “Good morning” etc. can be
translated though they are often just “hello” and “bye”. Greetings are clearly
more culture dependent: Hindi and Urdu differ in 17 places.

An example not in the Phrasebook drives home the point about greetings:
airport announcements beginning “Passengers are requested ...” are rendered
in Hindi as “yatriyd se nivedan haz .. (ITAT & f9@™ 8) and in Urdu
as “musafird se guza:rid kI jatI hz..” (m il S IR cw yoydlas),
which suggests that Hindi and Urdu have diverged even in situations almost
tailored for ‘Bazaar Hindustani’!

6.5.3 The Mathematics lexicon

Our MGL lexicon, for use with high school mathematics, has 260 entries.
Hindi and Urdu differ on 245 of these. The overlapping 15 include function
words used in a technical mathematical sense, “such that”, “where”, and so
on.
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As examples of the others, here are some English words with their Hindi
and Urdu equivalents in parentheses: perpendicular (1lafib &, amid sgec),
right-angled (samkon HHHIU, qayam zavi sl a3Ls), triangle (trib"uj
IS, masallas &lis), hypotenuse (karn 9T , vitar i), vertex (3irs
9T, ras Luly).

This total divergence comes about because Urdu borrows mathematical
terms only from Perso-Arabic, and Hindi, only from Sanskrit. There would
be more overlap in primary school, where Hindi uses more Hindustani words,
but the divergence is already complete by Class 6. The parallel English, Hindi
and Urdu texts [NCERT, 2012], from which we got the list above, show that
the grammar of the Hindi and Urdu sentences continue to be identical modulo
lexical changes, even when the lexicons themselves diverge totally.

Since it often happens in mathematics that every Hindi content word is
different from its Urdu counterpart, the languages are mutually unintelligible.
Even function words can differ. Either “yadi” or “agar” can mean “if” in
Hindi, but the Sanskrit “yadi” is often chosen for reasons of stylistic unity
with the Sanskrit vocabulary. Urdu never uses “yadi”.

More on Hindi mathematical terms

Our Hindi words were taken mostly from the NCERT books, which particu-
larly in the later classes use Sanskritised Hindi. They make good use of the
regular word-building capacity of Sanskrit. For example, “to add” is “jorna”
in the lower classes, but “addition” becomes “yog” in the higher classes. This
allows constructs like (yogatmak, additive), which is like (gunatmak, multi-
plicative), (b"agatmak, divisive) and so on.

One might think the NCERT books overly Sanskritised, but it is hard
to find other solutions, short of massive code switching between English and
Hindi. NCERT books are widely used all over India. We have no sales figures
for the NCERT mathematics books in Hindi, but there are not many widely
available alternatives. If Hindi is to become a language for mathematics,
these books might be a major lexical source.

6.5.4 Contrast: the converging lexicons of Telugu/Kan-
nada

Hindi and Urdu make a very unusual pair, agreeing so completely at the

base and diverging so much immediately after. Related languages usually go

the other way. An example is the pair Telugu/Kannada, two South Indian
languages.
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Telugu/Kannada do not share a base lexicon, and so are mutually unin-
telligible for everyday use, unlike Hindi/Urdu.

But at higher registers, where Hindi/Urdu diverge, Telugu/Kannada con-
verge. So where a Hindi speaker listening to technical Urdu would understand
the grammar but not the content words, the Telugu speaker listening to tech-
nical Kannada would recognise all the content words but not the grammar.

For mathematics, Telugu/Kannada use a Sanskrit-based lexicon essen-
tially identical to that of Hindi. We do not list the exact Telugu and Kannada
versions, but do note that the convergence Hindi-Telugu-Kannada would be
improved by deliberate coordination. For completeness, we mention that a
smaller part of the higher vocabulary, mostly administrative terms, is shared
with Urdu.

Further, Telugu/Kannada are in fact grammatically close, so a Telugu
speaker who knows no Kannada would need only a brief reminder of grammar
and a basic lexicon to read mathematics in Kannada—the mathematical
terms would be familiar. A hypothetical “Scientific Kannada for Telugu
Speakers” need only be a slim volume. It is the general reading in Kannada
that would need a bigger lexicon. This parallels the situation of an English
speaking scientist trying to read French—the scientific reading is easier!

But for a Hindi-speaking scientist trying to read Urdu, it is the everyday
texts that are easier, not the scientific ones.

6.5.5 Summary of lexical study

Our figures suggest that everyday Hindi and Urdu share 82% of their vocab-
ulary, but this number drops if we move to a specific domain: for tourist
phrases, to 69%, and for very technical domains, such as mathematics, to a
striking 8%.

An English speaker who knows no mathematics might hear mathematics
in English as built of nonsense words that function recognizably as nouns,
adjectives, verbs and so on. This is how mathematics in Urdu would sound
to a Hindi speaking mathematician (and the other way around), even though
Hindi and Urdu share a base lexicon and the grammar.

The mathematics lexicons of Hindi, Telugu and Kannada suggest that
a Sanskrit based vocabulary makes a powerful link across India. That vo-
cabulary also makes Urdu the odd language out amongst Indian languages,
despite its close relation to Hindi.
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6.6 Discussion

Our results confirm that Hindi and Urdu share a grammar, but differ so
much in vocabulary (even for travel and primary school) that they are now
different languages in any but the most basic situation. With the various
linguistic, cultural and political factors obtaining in India and Pakistan, a
good guess is that the languages will diverge further.

A regular Sanskrit base for Hindi technical terms would cement this diver-
gence from Urdu, but would give Hindi a more usual convergent relationship
with other Indian languages, differing at the everyday level but coming to-
gether at higher registers. Indeed this situation might argue for Sanskritised
Hindi as a national language, because for non-native Indian speakers this
may be easier to understand than Hindi with more Perso-Arabic words.

[Paauw, 2009] says “Indonesia, virtually alone among post-colonial na-
tions, has been successful at promoting an indigenous language as its na-
tional language.” Pakistan may have similarly solved its national language
problem, with a parallel situation of Urdu being the native language of a mi-
nority. A difference is that Urdu already has rich lexical and word-building
resources, whereas Bahasa Indonesia did not. So the Istilah committee has
over the decades standardised hundreds of thousands of terms. India does
not need that many new terms, since it too has a rich shared lexical resource
in Sanskrit, one that moreover has tremendous word-building capacity. But
a standardising committee may help, since often the same Sanskrit word is
used in different ways in different Indian languages. A standard pan-Indian
lexicon for technical terms would allow for ease of translation, and might
spur the usabilty of all Indian languages for science and technology.

Future Work

We hope to develop our Phrasebook and MGL tools, aiming for practical
use. We also need to fix the remaining errors in our grammars, to do with
continuous tenses, word order for some questions and negations, and the
translation of English articles. Fixing these might be non-trivial. We have
stated two other goals, to rebuild our resource grammars on a phonetic basis,
and to do a progressive mathematics lexicon. We have started work on this
last, which we believe will show an increasing divergence between Hindi and
Urdu as we go to higher classes. The NCERT books are available in both
Hindi and Urdu, so we have a ready made source for the lexicons.
Currently, popular articles and TV programs that need advanced vocab-
ulary (e.g., music competitions or political debates) in Hindi take the terms
needed from English, Urdu and Sanskrit sources, though these elements sit
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uncomfortably together, at least as of now. More examples are worth study-
ing.
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Chapter 7

Application Grammars

As described in previous chapters, there are two types of GF grammars:
Resource Grammars and Application Grammars. The resource grammars can
be used as libraries to build the application grammars. In this chapter, we
describe how we have added support for different Indo-Iranian languages in
three already existing GF application grammars: the MOLTO Phrasebook,
the Mathematics Grammar Library (MGL), and the Attempto Controlled
English (ACE) grammar.
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7.1 The MOLTO Phrasebook

The MOLTO Phrasebook [Ranta et al., 2012] is a multilingual application
grammar that can translate touristic phrases between 20 natural languages.
This application grammar shows practically, how one can use the GF resource
grammar library to quickly develop a multilingual application grammar for
high quality translations. The grammar uses the GF’s core concept of one
abstract and multiple parallel concrete grammars for multilingualism, which
in principle does not put any limit on the number of languages it can support.
Initially the grammar supported 14 languages, but now this number has
reached to 20. In this section, we show how one can add support for new
languages using the respective language resource grammars.

The Phrasebook abstract grammar has a total of 42 categories and 290
functions. Out of these functions, 160 are lexical constants or canned phrases,
while the remaining ones are syntactical constructions. To add support for a
new language means to write the concrete representation of those categories
and functions defined in the abstract grammar. Initially this looks like a hard
task, but actually it is a lot simpler than it looks for the following reasons:

1. The linearizations of around 34 categories, and 88 functions are shared
among different languages using functors. This means these lineariza-
tions need not to be rewritten for a new language. Few of these lin-
earizations are:

lincat
Phrase = Text ;
Greeting = Text ;
Sentence = S ;
lin
-- Where is a hospital
WherePlace place = mkQS (mkQCl where IAdv place.name) ;
-- Where are you
WherePerson person = mkQS (mkQCl where IAdv person.name) ;

However, this does not always work and there is a possibility that some
of those implementations are language-dependent. In that case, there
is a way to exclude such implementation from the shared code and
override them with the language-dependent versions.

2. There are many constructions which might need only the lexical re-
placements. For example consider the following implementation:
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-- I know/I don't know/Does she know
AKnow p = mkCl p.name (mkV "know") ;

For any new language, replacing the lexical constant "know” with the
language-specific string might work. At least for Urdu the following
lexical replacement worked:

AKnow p = mkCl p.name (mkV "Lila")

3. The implementation of many of the other language-dependent syntacti-
cal constructions is possible using the resource grammar library (RGL)
functions, which means these implementations need not to be written
from scratch and RGL can assist.

Despite the above mentioned reasons, adding support for a new language
might not be that straightforward. The reason is that there are many syn-
tactical constructions (e.g. predication rules, question constructions etc.),
which are language dependent and hence can not be shared, and for which
simple lexical replacements are not enough. Sometimes, it might require a
considerable effort to get them right. Consider the following construction:

QWhatAge : Person -> Question ; -- how old are you

This is a typical example of a language-dependent construction and different
languages treat it differently. In Urdu this construction will be treated in the
sense of ("how much age you have”,” 4 (3 jae S L1”), and is implemented
as follows:

QWhatAge p = mkQS (mkQCl howMuch IAdv (mkNP p (mkN " jac"
feminine))) ;

The lexical paradigm 'mkN’ takes the lemma and the gender of the noun
(sec,0:mar,age) as arguments and builds a noun. The resource grammar
APT’s function mkNP takes the "Person’ and the noun (ee,0:mar,age) and
builds a noun phrase. This noun phrase is then passed to the API’s function
mkQC1 together with the integrative adverb ’how much’, which builds the
required clause. Even though the construction is very language dependent,
the important point is that it is still possible to build it using the RGL
functions and that the abstract syntax can be preserved.

We have added support for Hindi, Urdu and Persian in the Phrasebook
using the corresponding language resource grammars and building the con-
structions from scratch where ever necessary. Figure 7.1 shows the touristic
phrase 'where is a hospital’ and its translations in Hindi, Persian, and Urdu.
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| mpstract | &= [H] WherePlace (APlace Hospital)

| Eng | =2 where is a hospital
(Hin | &% HEIATS FEl g
| Pes | a2 Cuul S 5l lea Sy

urd | oS Sl

where is a hospital

Figure 7.1: The Phrasebook Demo

7.2 MGL: The Mathematics Grammar Library

The mathematics grammar library (MGL) [Caprotti and Saludes, 2012] is an
application grammar for translating mathematical expressions between dif-
ferent languages. The starting point of this library was the WebAltl gram-
mar, which has been extended and re-structured for better maintenance.
There are many new constructions, and at the moment it has support for 13
natural languages including Bulgarian, Catalan, English, Finnish, French,
German, Hindi, Italian, Polish, Romanian, Spanish, Swedish and Urdu. The
grammar consists of approximately 36 categories, and around 275 functions
covering a wide range of arithmetic constructions related to general arith-
metic, algebra, geometry, logic, sets etc. The grammar also has a lexicon of
around 250 arithmetic terms. We have added support for Urdu and Hindi in
this library. Figure 7.2 shows the translation of the proposition 'the sum of X
and Y is equal to Z’ in 15 different languages including Hindi and Urdu. (visit
http://www.grammaticalframework.org/demos/mathbar/ for a live demo)

7.3 The ACE Grammar

The AttemptoE Controlled English (ACE) is a controlled natural language.
It is a subset of natural English language and, by principle, is supposed to

thttp:/ /www.webalt.net /index_eng.html
2http://attempto.ifi.uzh.ch/site/
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\@| <[l rkProp (eq_num (plus (BaseValNum (Var2Num X) (Var2Num Y)) (Var2Num Z))
\E| e cymarana X wua Y ¢ pasmaio Z

G| AlasumadeXiYésigualaZ

\E\ o the sumof X and Y is equal to Z

\Ej < X:n ja Yn summa on yhtisuuri kuin Z
\_E\ <= lasomme de X etde Y estégale AZ
\E| o die Summe von X und von Y ist gleich Z
| S XERY AN L G

\£| o lasommadiXeYéugualeaZ
] AX+[Y]=[2)

\Ej o osuma X 1Y jestréwna Z

\E| o suma loi X sili Y este egald la Z

hus|  SsoymaXnY pasaZ

\£| o lasumade Xy Y esigualaZ

\£| o2 summan av X och Y érlika med Z

‘U_i| EWE.X”IY,AJ@ISZ':L&\‘&:S

Ihcsumofi and 1 isoqualmi

Figure 7.2: The MGL demo

be unambiguous. In an experiment [Angelov and Ranta, 2009], a GF appli-
cation grammar was developed to show how GF can be used for controlled
language implementations. The result of the experiment was a multilingual
GF grammar, consisting of approximately 26 categories and 121 functions.
This grammar can be used to translate the ACE documents between any of
the five languages including English, French, Finnish, German, and Swedish.
We have added support for Urdu, making it the sixth language in total. The
grammar now has support for 15 languages, and have been used to implement
a multilingual semantic wiki [Kaljurand and Kuhn, 2013].
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Chapter 8

Towards an Arbitrary Text
Translator

In this chapter, we describe our experiments to develop a wide-coverage ar-
bitrary text translator. We propose different translation pipelines that use
resource grammars and wide-coverage GF lexicons to translate arbitrary text.
We also give baseline evaluation results of our system and compare it with
Google translate. The main result is that with few limitations, our system
can beat Google translate for under-resource languages like Urdu.
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8.1 Introduction

Machine translation methods can be broadly classified into linguistic-based
and non-linguistic-based translation paradigms [Dorr et al., 1998]. The lin-
guistic based paradigms rely heavily on linguistic theories, and use well-
grounded principles of morphology, syntax and semantics. Even though they
are old-fashioned, they are closest to classical theories and philosophical view
of natural languages. The rule-based, lexical-based, knowledge-based, and
constraint-based machine translation systems lie in this category.

The non-linguistics based translation paradigms, on the other hand, rely
on the availability of a vast amount of machine readable linguistic data (i.e.
dictionaries, monolingual and bilingual parallel text corpora etc.), the pro-
cessing capabilities of modern-age computers, and advanced machine learning
algorithms. In the recent years, they have been in-fashion and hot research
topics in the area of machine translation. As a result, there exist state of the
art machine translation systems, like Google translate, which uses parallel
text and statistical methods to translate text from one language to other.
Example-based and neural-network-based machine translation systems are
the other examples of the non-linguistic paradigm.

Both of the these paradigms have their own advantages and disadvan-
tages. If we put them on an accuracy versus coverage graph, the linguistic-
based approaches reside high on the quality axes, while the non-linguistic-
based approaches reside high on the coverage axes. In the past there have
been a lot of debate, and people from either side have been arguing to
prove the superiority of their techniques. The fact of the matter is that
both of these paradigms offer some unique advantages, and have limita-
tions at the same time (a comparison between SMT and RBMT is given
in [Thurmair, 2004]). This has forced the people from two different schools
of thought to come close to each other resulting into a third approach: hy-
brid translation paradigm. This approach is under active development, and
a number of experiments [Ahsan et al., 2010, Grishman and Kosaka, 1992,
Carbonell et al., 1992] have been reported previously.

In one way of hybridization, one of the two approaches (i.e. linguistic and
non-linguistic) is used as a principle translation technique, while the other
is used to overcome the shortcomings of the main approach. An example
is the use of linguistic rules and full-form lexicons in the statistical machine
translation (SMT) systems. In this example, SMT is the principle translation
technique, while linguistics rules and full-from lexicons are used to solve the
data sparse issue.

Grammatical Framework (GF) [Ranta, 2004] is a grammar formalism tool
and is suitable to build rule-based natural language processing (NLP) ap-
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plications. GF provides a library of a set of parallel resource grammars
[Ranta, 2009b] to assist its developers. GF and its resource grammar library
were not originally designed for open-domain machine translation, but in the
recent past the coverage of its resource grammars and its processing speed
has grown to a level, where one can think about open-domain machine trans-
lation. However, for that, there are a number of challenges in-front including
syntactic and lexical disambiguation. GF uses Parallel Multiple Context
Free Grammars (PMCFG) [Seki et al., 1991, Ljunglof, 2004] for parsing and
suffers with syntactic ambiguity — one of the known issues with Context Free
Grammars (CFG). Since natural languages are ambiguous, it is not surprising
that for a sentence of length, say 20 tokens, the parser can return hundreds
and even thousands of possible parse trees. How to disambiguate these trees
(i.e. how to find the best possible syntactic analysis of a given sentence
under a given CFG?). The usual way is to use statistics. This means, for
open-domain machine translation in GF, one needs to think in terms of a
hybrid approach, where the grammars can be used for parsing, and statistics
can be used for disambiguation. Recently, the GF parser was extended to
do syntactic disambiguation using a statistical model built from the Penn
Treebank data [Angelov, 2011]. In this chapter, we describe our recent ex-
periments for arbitrary text translation in GF, and also give directions for
future work.

8.2 Our Recent Experiments

In GF, the translation works in a way analogous to compilers. The source
language parser returns an abstract syntax tree which is then linearized to
a target language. This means that there are two major translation phases:
parsing and linearization. We did two rounds of experiments to discover is-
sues related to each of the two phases, and to evaluate the systems. However,
we also report a third round to deal with a more general issue of word-sense
disambiguation (WSD). Let’s start with round 1.

8.2.1 Round 1

In this round, we did not consider issues related to parsing, but concentrated
only on the linearizarion phase. We took a set of around 2000 GF trees,
which were produced by converting the Penn Treebank trees to GF format
[Angelov, 2011]. The advantage of using the pre-parsed set was that these
trees were guaranteed to be correct, and we did not need to take care of the
parsing issues. We linearized this set of trees to German, Hindi and Urdu
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Translation System | BLEU | WER | PER | TER
Google 0.31 | 0.56 | 0.43 | 0.53
GF 0.34 | 0.61 | 0.51 | 0.59

Table 8.1: The English-Hindi evaluation results for in-grammar sentences.

using their resource grammars and wide coverage lexicons. The evaluation
results are given in the following subsections.

Evaluation

For the purpose of evaluation, a random set of 100 sentences was selected, and
then two candidate translations were produced: one by using the GF trans-
lation system, and the second by Google. To avoid any biasing a random
mixture of 100 translations (50 from GF, and the other 50 from Google) was
given to informants, who were native speakers of the underlying language,
for corrections. The corrected translations returned by the informants were
used as a gold-standard. The two candidate translations were evaluated
against the gold-standard using an automatic on-line evaluation tool: Asiya
[Giménez and Marquez, 2010]. The evaluation results are given in the fol-
lowing subsections for each of the language pairs:

English-Hindi

Table @ shows different evaluation scores for the English-Hindi pair. We
can see that our baseline translation system got better® BLEU scores than
Google.

English-German

Table 8.2 shows evaluation scores for English-German pair. Google transla-
tions are better than GF, probably due to the rich amount of training data.
Note that, also in GF system, the BLEU scores for German are better than
the other languages. This has probably to do with the higher quality of the
German grammar due to its long history of use in GF applications.

English-Urdu

For a different set of 30 random sentences — long sentences compared to
the sentences used for English-Hindi, and English-German evaluations, the

LOf course, the comparison with Google translate is not fair, because we are evaluating
the systems on in-grammar sentences using pre-parsed sentences.
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Translation System | BLEU | WER | PER | TER
Google 0.63 0.25 | 0.19 | 0.23
GF 0.50 | 0.31 | 0.30 | 0.31

Table 8.2: The English-German evaluation results for in-grammar sentences.

Translation System | BLEU | WER | PER | TER
Google 0.22 0.71 | 0.49 | 0.65
GF 0.34 | 0.57 | 0.37 | 0.51

Table 8.3: The English-Urdu evaluation results for in-grammar sentences.

evaluation results for the English-Urdu pair are given in Table 8.3. The GF
system is better than the Google system. The Goolge translations for Urdu
are not very impressive, probability because of the unavailability of huge
amounts of machine readable parallel data for English-Urdu pair.

Summary of Round 1

The BLEU scores in this round were very encouraging, not only competitive
but better than Google translate for English-Hindi, and English-Urdu pairs.
This suggests that we have an arbitrary text translator ’almost for free’ from
already existing resource grammars. But, let’s first consider the second round
of experiments before making such claims.

8.2.2 Round 2

Figure 8.1. shows the translation pipeline for this round. The architecture
is hybrid, and it uses the Resource Grammar Library (RGL) of GF as the
syntax and semantics component, a statistical model built from the Penn
Treebank data for parse-tree disambiguation, and wide-coverage GF dictio-
naries as lexical components. Internal GF resources (e.g. resource grammars
and dictionaries) are shown in rectangles while the external component (i.e.
PennTreebank) is shown in double-stroked rectangle.

The input is parsed using an extended version of the English resource
grammar (i.e. ParseEng in Figure 8.1) and a comprehensive English dictio-
nary (i.e. DictEng in Figure 8.1). In cases where the input is syntactically
ambiguous the parser returns more than one parse-trees. These trees are dis-
ambiguated using the statistical model. Finally, the best tree is linearized to
a target language using an extended version of the target language resource
grammar (i.e. TLPG in Figure 8.1) and its lexicon.
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ParseEng+DictEng TLPG+DictTL

ParseTree
Disambig-
uation

Input Parse-Trees Best Tree _ (lineariz-\ Output

!

Penn TreeBanK

TLPG : Target Language Parse Grammar

Figure 8.1: The translation pipeline.

There were a couple of issues in this phase including parsing speed and
robustness. Let’s first see how we deal with them for our current experiments,
which is followed by the evaluation results.

o Parsing Speed: The parser sometimes takes very long time for long
sentences, so we restricted our experiments to the sentences with length
<=15 tokens.

 Robustness: The parser supports limited robustness and returns meta
variables (i.e. ’?") for the unknown tokens. In a parse tree these meta
variables can appear both at the leaf nodes (i.e. lexical entries) or at
the higher positions (i.e. function names). The GF linearizer, however,
does not fully support partial parse-trees. The linearizer returns a
lineariztion only if a tree has meta variables at the leaf node positions,
but not if a tree has meta variables at a function name position. For
these experiments, we considered only successfully linearized trees.

Evaluation

We took a set of 100 sentences (each with a length <=15 tokens), parsed
it and linearized it to Urdu. 60 sentences out of these 100 sentences were
successfully linearized (as explained in the previous section, the trees with
meta variables at the position of function names are not supported). Table
8.4 gives our first results (here we give only the BLEU scores). If we compare
the base-line BLEU scores (i.e. rl in the Table 8.4) with the BLEU scores
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Rounds GF | Google

rl1:Base Line 0.0232 | 0.1675
r2:After Lexical Filling 0.0339 | 0.1665
r3:After Construct Filling 0.0344 | 0.1665

r4d:After Removing Meta Variables | 0.0342 | 0.1665
r5:After Symbols Scripts Changed | 0.0424 | 0.1665
r6:After Better Lexical Choices 0.0574 | 0.1665

Table 8.4: The English-Urdu evaluation results

of round 1, we can see a considerable difference. Round 1 suggests that GF
system is better than Google for some languages, but the base-line scores in
round 2 suggest it the other way around. Few initial observations and their
effect on the BLEU scores are described below:

« Missing Lexical Entries: Consider the following sentence and its
translation produced by the GF system.

Source: the savagery of the attack has shocked the
government and observers
Translation: o K s jaus sl g5ls Joe savagery K Llas

The words that do not exist in the target language lexicon are preserved
in the output e.g. ’savagery’ in the above sentence. This have an effect
on BLEU scores. Our scores improved from 0.023 to 0.033 (see r2 in
the above table) after enriching the target language lexicon with the
missing words.

o Missing Functions: If the target language grammar is missing some
constructions can effect on the BLEU scores. r3 in the above table
shows that the scores improved from 0.033 to 0.034 after enriching the
target language grammar with the missing functions.

o« Meta Variables: The GF system output might have meta variables
e.g consider the following example:

Source: pakistani squad left for West Indies via Dubai and
London on Saturday
Translation:

B o 58y canyd S oail ol Glugs b€ il S s 75

In this example the word ’pakistani’ was not parsed and the linearizer
returned a meta variable '75’. We observed a decline in the BLEU scores
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(see r4 in the above table) after removing such meta variables from the
output (probably because the number of word-count difference).

« Symbols Script: In the GF system, the proper names are parsed as
special symbols and are not translated. However, for Urdu at least
their script should be changed. After changing the script we observed
an improvement from 0.034 to 0.042 (r5 in the above table)

o Lexical Choices: Our GF Urdu lexicon was compiled from different
sources and was known to have low quality and sometimes wrong one-
to-one word mappings. For example in the sentence:

Source: pakistani squad left for West Indies via Dubai and
London on Saturday
Translation:

By iy o3 oS oail sl shigs colS 55 Eeg s 75

The word ’leave’ has been wrongly mapped to cusi, instead of couni,
Ly in the Urdu dictionary. A manual correction of such entries im-
proved the scores from 0.042 to 0.057.

From the above given detailed analysis and corrections, we observed an
overall improvement from 0.023 to 0.057. But, we can see that there is still
a considerable difference between round 1 BLEU scores and the improved
round 2 BLEU scores. We did some further analysis which lead us to the
following further observations.

Further Observations

« Word Sense Disambiguation: Manual inspection of the results re-
vealed that another reason for these low BLEU scores is word sense
ambiguity. For example in the sentence:

you are familiar with triangles and many of their properties
from your earlier classes

The noun "property’ was translated to sladla, jairda:d — in the sense of
'belongings’ rather than ’characteristics’. Currently, GF system does
not support any Word Sense Disambiguation (WSD). However, in our
in-progress work , we have added some support for WSD. Details are
given in the next round.
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« Syntactic Transformations: Another issue is syntactic transforma-
tions. In an inter-lingual translation approach, when the source and
target languages do not express the common meaning in the same syn-
tactic way, structural changes are needed. As an example, consider the
sentence "I have few books”. The GF abstract representation for this
sentence is given in Figure 8.2. If we linearise this tree to Urdu, it will

PredVP : Cl

/N

UsePron : NP ComplSlash : VP

| N

i_Pron : Pron SlashV2a : VPSlash DetCN : NP

| N

have_V2:V2 few_Det : Det UseN : CN

book_N : N

Figure 8.2: Abstract representation

produce the following translation:
ast BaS, (ulS win ae mé cand kita:bé rakta: ho
However, this is not the preferred translation. The preferred one is
om ombS win by e mere: pacs cand kita:bé he

”in my possession are few books”, which needs a structural change be-
fore linearisation. For high quality translations these structural changes
are important. In the current experiment, we do not perform these
changes, but this is an important direction for future work.

e Choice of Prepositions: Another major issue is the choice of a propo-
sition. For example consider the following two sentence segments:

Use of mobile phone by students
Taken to the hospital by ambulance

If we translate them to Urdu, the preferred translation for the prepo-
sition 'by’ in the first sentence segment is ., while for the second
sentence segment, the preferred translation is pas,d S, Our current
translation system does not handle such issues.
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o« Word-Order Preferences: Another issue, perhaps more specific to
Urdu/Hindi, is the word-order preferences in adverbial phrases. Ur-
du/Hindi tends to show different word-order preferences for different
types of adverbs (e.g. time, place, manner etc.) in the final adverbial
phrase. The followings are few observations:

— Adverbs of time tend to come before adverbs of place. (e.g. here
at 4-o-clock, "ca:r baje: yaha”)

— Adverbs of manner tend to come after the adverbs of time and
place. (e.g. here at 4-o-clock happily, "ca:r baje: yaha khuxi:
se:”)

— Several adverbs of the same kind are ordered bigger to smaller.
(e.g. every evening at 4-o-clock, "ro:z xa:m ca:r baje:”.

Our current implementation does not distinguish between different
types of adverbs, and hence does not reflect such preferences.

o Stylistic and Idiomatic Issues: There are many stylistic and id-
iomatic issues that need to be handled to produce a realistic translation
in many cases. For example consider the phrase "an evening of music”.
The syntactic translation of this phrase to Urdu will produce 7 s&iuse
als Sl 87 which is perhaps acceptable but not realistic. The realistic
translation will require a syntactic transformation from “an evening of
music” to "music-gathering” before translation. Similarly, the transla-
tion of idiomatic expressions is another issue.

8.2.3 Round 3

In this round, we experimented to overcome the issue of word-sense am-
biguity by integrating an external word-sense disambiguation tool into our
translation pipeline. Let’s first see the translation pipeline for this round.

System architecture

The translation pipeline for this round is similar to the translation pipeline
of round 2 (see Figure 8.1) except that we have an extra component to deal
with word sense disambiguation, and a different version of a target language
lexicon is used. In Figure 8.3, IMS(It Makes Sense)[Zhong and Ng, 2010] is
a word sense disambiguation tool and LinkdedDict refers to the full-sense
lexicon, described in Chapter 5, of a target language.
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Figure 8.3: The translation pipeline with WSD.

Experimental Setup and Evaluation

Our experimental setup is as follows: We took English text, as source, and
translated it to a target language (Hindi in these experiments) by passing it
through the translation pipeline shown in Figure 8.3. To show the effects of
word-sense disambiguation and for comparison purposes, we translated the
same source twice: with and without word sense disambiguation using the
translation pipelines given in Figure 8.3 and 8.1 respectively.

We compared both candidate translations to find if we have gained any-
thing or not.

Next, we give a number of example sentence with comments to show that
how the full-sense lexicons improved the quality of translations, and also give
some examples where it worked the other way around.

Hindi

1. Source Mr Baris is a lawyer in New York .
Without WSD Mr Baris New York mé kanlin k3 pafidit h
With WSD Mr Baris New York m& vakil he
Word order Mr Baris New York in lawyer is
Comments kaniin ka pafidit is “expert/teacher in law”, while vak1l

means “lawyer”.
2. Source we don’t depend on pharmaceutical companies for our support

Without WSD ham ausad®Iya sahydgl par hamare b"aran pdsan
ke liye nahI nirte h&.
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With WSD ham ausadIya kafipanI par hamire nirvah vyay ke
liye nahI tte h%.
Word order We pharmaceutical companies on our subsistence

expenditure for not 7?77 do

Comments sahyogl means “company” in the sense of “colleagues”,
nirvah vyay means “subsistence expenditure” , while bParan
posan means “weight bearing”. The penultimate word in both
versions is nonsense, and the lexicons need to be debugged.

3. Source you may recall that a triangle is also a polygon

Without WSD tum "recall may" ho ki trayengl "also" bahub™uj
he

With WSD tum smaran kar sakte ho ki trikon b"I bahub"uj
ha

Word order You recall do can that triangle also polygon is

Comments The version without WSD has several missing words. The
WSD version of "recall” is not idiomatic, but understandable.

4. Single words

(a) (human) right. Without WSD: daksin right (not left), WSD:
ad"ikar.

(b) security (of person). Without WSD: ropatr (as in commercial
paper), WSD: suraksa

(c) property (in law) Without WSD: d"an (means “wealth”), WSD:
sampatti.

(d) nationality (as citizenship). Without WSD: rastriyta (could
mean ‘nationalism”), WSD: rastrikta.

(e) comment. Without WSD: mat prakat (announce opinion),
WSD: t1ika tippani (commentary)

(f) pair (of socks). Without WSD: pati-patni (married couple),
WSD: yugm

8.3 Future Directions

e One can try to improve the quality of lexicons, our observation is that
the major bottleneck in getting high quality translations is the quality
of lexicons.
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o Better ways to do word-sense disambiguation need to be explored and
one should try to integrate it within GF translation system, rather than
doing it as a post-processing step.

e The current syntactic disambiguation in GF is based on context-free
probabilities. For better syntactic disambiguation, one can try to use
context-dependent probabilities and the structural preferences given
in Collins Generative Models of Parsing [Collins, 1997]. As an exper-
iment, we implemented and used the Collins first model, with some
adjustments, as a post-processor to re-rank the trees returned by our
current disambiguation model. We witnessed some improvements, but
the results are not mature enough to be reported here.

o One can try to use statistics to deal with the issue of preposition choices.
The probabilities of using a particular proposition with a particular
word can be calculated from training data, and then can be used in the
translation system.

e One needs to find a way to deal with the stylistic issues and the trans-
lation of idiomatic expressions to produce more realistic translations.

Specific to Hindi/Urdu

e One can try to categorize the adverbs into time, place, manner etc.
and deal with the word-order preferences issue. One way to do it is to
have an extra field in the linearization of the adverb category to store
information about its type. Later, this information can be used to
adjust different word-order preferences in the construction of the final
adverbial phrase.
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Appendix A

Hindi and Urdu Resource

Grammars Implementation
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A.1 Modular view of a Resource Grammar

GrammarL LangL AllL

Adjectivel GrammarL LangL
AdverblL LexiconL Extral
ConjuctionL
IdiomL
MaounL
MumeralL
PhraseL
CuestionL
Relativel
Sentencel
Structurall
TextlL
TenselL
TransferL
VerblL

Y
Y

LexiconL Extral —

Figure A.1: Modular view of a Resource Grammar

GF provides a module system to support the division of labour. Figure A.1
shows different modules of a resource grammar. The three main modules
are GrammarL, LangL, and A11L, where L stands for a three character ISO
language code (e.g. "Hin’ for Hindi, "Urd’ for Urdu). A small description of
each of these modules follows:

o The module GrammarL is further composed of 15 modules. Each of
these 15 modules,except Structurall, TransferL and TenseL, be-
longs to one of the GF resource grammar’s syntactical categories, and
contains construction rules specific to that particular category . The
Structurall module contains structural words (i.e. closed categories
e.g. prepositions, determiners, quantifiers), TransferL defines exper-
imental transfer rules (e.g ’active2passive’), and TenseL defines GF
resource grammar library’s tense system.

e The GrammarL module is combined with the lexical module LexiconL
to build the LangL module. The LexiconL module has lexical entries
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which are provided as a test lexicon with each resource grammar.

e LangL and ExtralL are then combined to produce a final module A11L.
The ExtraLl module contains language specific constructions, which are
not accessible through the common resource grammar API, but can be
accessed directly from this module.

A.2 Functor Style Implementation of Hindi
and Urdu Resource Grammars

Open Open
P CommonHindustani B

Diffin  H0SANCOf ol | pigayingustani | feDStanceOf | pq,

I 1

ResHin InstanceOf »

< InstanceOf

ResHindustani

ResUrd

With

NounHindustani

MNounHin NounUrd

v v

Figure A.2: Implementation of Hindi/Urdu Noun-Phrases through a Functor
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Hindi and Urdu resource grammars have been implemented through a func-
tor, which makes it possible to share the common code. The advantage of
using functors is that they reduce the efforts required to implement a new
language, and can also ease the task of bug fixing and maintenance. In the
case of Hindi-Urdu, about 94% of the code was shared, and the implementa-
tion time reduced from months to days.

All syntactic modules were implemented through functors using the same
principle, but here we briefly describe the development of Hindi/Urdu noun
phrases only. Figure A.2 shows relationship between different modules dia-
grammatically, while their brief description follows.

NounHindustani—Functor

incomplete concrete NounHindustani of Noun =
CatHindustani ** open CommonHindustani, ResHindustani, Prelude in {

lin
DetCN det cn = {
s = \\c => detcn2NP det cn c det.n ;
a = agrP3 cn.g det.n

The keyword incomplete (in the above code) declares NounHindustanil
module to be a functor.

NounUrd—Concrete Module

concrete NounUrd of Noun = CatUrd ** NounHindustani with
(ResHindustani = ResUrd) ;

This module defines the concrete grammar NounUrd of the abstract grammar
Noun using the ResUrd instance of the ResHindustani interface.

NounHin—Concrete Module

concrete NounHin of Noun = CatHin ** NounHindustani with
(ResHindustani = ResHin);

We are using the term Hindustani to refer to the Hindi/Urdu base grammar

120



This module defines the concrete grammar NounHin of the abstract grammar
Noun using the ResHin instance of the ResHindustani interface.

ResHindustani—Interface

interface ResHindustani =
DiffHindustani ** open CommonHindustani, Prelude, Predef in {

param

RAgr = RNoAg | RAg Agr ;
RCase = RC Number Case ;

oper

np2pronCase ppf npc a = case npc of {
NPC ¢ => ppf ! c;
NPObj => ppf ! Obl ;
NPErg =>case (fromAgr a).p of {
(Pers3_Near|Pers3_Distant) => addErgative (ppf ! Obl) nE;
=> addErgative (ppf ! Dir) nE

The ResHindustani interface extends the DiffHindustnai interface (note
the extension operator **). This module contains definitions of all param-
eters and operations that are used to implement different syntactic rules of
a resource grammar. For example, in the above code keyword param de-
clares two parameters (i.e. RAgr and RCase) for the agreement and case
features of a relative clause, while the keyword oper defines an operation
(i.e. np2pronCase) for the construction of different noun-phrase cases. Note
that the ergative case of a noun phrase is build using the function ’addErga-
tive” which takes the ergative case marker, represented by the constant nk,
and the direct or oblique case as arguments. These arguments are concate-
nated in the case of Urdu, but are glued together in the case of Hindi (see
the DiffHin, and DiffUrd instances for more details). This shows how the
differences between these two languages are implemented.
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ResHin—Instance

instance ResHin of ResHindustani =
DiffHin ** open CommonHindustani, Prelude, Predef in {} ;

The ResHin is an instance of the ResHindustani interface. It is an extension
of the DiffHin, which is an instance of the DifHindustani interface.

ResUrd—Instance

instance ResUrd of ResHindustani =
DiffUrd ** open CommonHindustani, Prelude, Predef in {} ;

The ResUrd is an instance of the ResHindustani interface. It is an extension
of the DiffUrd, which is an instance of the DifHindustani interface.

DiffHindustani—Interface

interface DiffHindustani = open Prelude in {
oper

addErgative : Str -> Str -> Str ;

copula : CTense -> Number -> UPerson -> Gender -> Str ;
raha : Gender -> Number -> Str ;

cka : Gender -> Number -> Str ;

hw : UPerson -> Number -> Str ;

hwa : Agr -> Str ;

conjThat : Str ;

kwd : Str ;
ky : Str ;
ka : Str ;
agr : Str ;
awr : Str ;
jn @ Str ;
js : Str ;
jw : Str ;
kw : Str ;
mt : Str ;
nE : Str ;
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nh : Str ;

sk : Str ;

nE : Str ;

hE : Str ;
mein : Str ;
na : Str ;
nahen : Str ;
xayad : Str ;
kya : Str ;

}

The DiffHindustani interface contains the declarations of those operations
whose implementation is different for Hindi and Urdu. These include some
lexical items (e.g. ka, ky, awr etc.) that are used in the syntax part, and
also the following syntax functions:

e addErgative : Str -> Str -> Str: The ergative-case constructor.

e copula : CTense -> Number -> UPerson -> Gender -> Str: The
copula constructor.

e raha : Gender -> Number -> Str: The auxiliary verb 'raha:’
e cka : Gender -> Number -> Str: The auxiliary verb ’cuka:’.
e hw : UPerson -> Number -> Str: The auxiliary verb "ho’.

e« hwa : Agr -> Str: The auxiliary verb "hua:’

DiffHin—Instance

The DiffHin instance defines the Hindi version of those operations defined
in the DiffHindustani interface. The implementation of some of these op-
erations follows.

instance DiffHin of DiffHindustani =
open CommonHindustani, Prelude in {
oper
addErgative sl s2 = Prelude.glue sl s2 ;

raha : Gender -> Number -> Str = \g,n ->

case <g,n> of {
<Masc,3g> => "I{GI"; -- raha:
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<Masc,P1> => "¥g"; —-- rahe
<Fem, > => "T‘@'" -- rahi:

};

cka : Gender -> Number -> Str = \g,n ->
case <g,n> of {

<Masc,Sg> => " ", -- cuka:
<Masc,P1> => " ", —— cuke
<Fem, > =>" " —— cuki:
+;

agr = "WT" ; -- agar

awr = "3frT" ; —— aur

ky = e ; —— ki

ka = "&1" ; —-- ka:

jn = Urcl ; —— Jjin

js = "fo@ ; —- jis

jw = NS ; —— jo

kw = " ; —— ko

mt = "HJd" ; -- mat

nE = "q ; —— ne

nh = "9" ; -- na:

SE = "g" ; —— se

hE = "g" ; -- he

kwd = "gg" ; -- xud

nahen = "Héf” ; —— nahi

xayad = "¥MAI" ;-- Sa:yad

kya = "H1" ; -- kya:

mein = "H" ; -- md

}

Note in the operation addErgative, the two string arguments are glued using
the predefined ’glue’ operator. This is different in Urdu where the ergative
case marker is used as a separate word.
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DiffUrd—Instance

Here we can see that the addFErgative operation concatenates its two string
arguments using the concatenation operator '++’ as opposed to the ’glue’
operator in DiffHin.

instance DiffUrd of DiffHindustani =
open CommonHindustani, Prelude in {

oper
addErgative sl s2 = sl ++ s2 ;

raha : Gender -> Number -> Str = \g,n ->
case <g,n> of {

<Masc,Sg> => "L,"; -- raha:
<Masc,P1> => " _4,"; —- rahe
<Fem, > => " ," —- rahi:
+;

cka : Gender -> Number -> Str = \g,n ->
case <g,n> of {

<Masc,Sg> => "IKy"; -- cuka:
<Masc,P1> => " _&y"; -- cuke
<Fem, > => "Sa" -- cuki:
}s;

agr = ";|" , —— agar

awr = ”Jj|" ; —— aur

ky = "LS‘S" ; —- ki:

ka = "K" ; -- ka:

jon = "ot 5 -- jin

js = "owt 5 - jis

ju = st 5 == jo

kw = "&" ; -- ko

mt = "¢" ; -- mat

nE = " 4" ; —-- ne

nh = "L" ; -- na:

sE = "_w" ; —— se

hE = "" ; -- h2

125



kwd = "g¢a" ; —- xud

nahen = "»3" ; -- nahi
xayad = "wli" ; -- Sa:yad
kya = nL»‘Su ;o o—- kya:

mein = "w" ; —-- mé

CommonHindustani—Resource Module

The CommonHindustani module contains the definitions which are common
to both Hindi and Urdu. The code given below defines the structure of a
verb phrase (i.e. VPH) and a noun phrase (i.e. NP), and their presence in
this module means that they are shared among Hindi and Urdu resource
grammars.

resource CommonHindustani =
ParamX ** open Prelude, Predef in {

oper
VPH = {

s : VPHForm => {fin, inf : Str} ;

obj : {s : Str ; a : Agr} ;

subj : VType ;

comp : Agr => Str;

inf : Str;

ad : Str;

embComp : Str ;

prog : Bool ;

cvp : Str ;

I

NP : Type = {s : NPCase => Str ; a : Agr} ;
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Appendix B

Resource Grammar Library
API
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Introduction

This appendix lists important Resource Grammar Library API’s lexical and syn-
tactical constructions with examples in seven languages: English, Hindi, Nepali,

Persian, Punjabi, Sindhi, and Urdu.

These examples have been automatically

generated using the corresponding resource grammars. We have used the sam

scripts that were used to produce the GF Resource Grammar Library Synopsis
document with suitable changes for a paper-based version.

Explanations
Category | Explanation Example
one-place adjective warm
two-place adjective divisible
adjectival phrase very warm
dA adjective-modifying adverb very
dN numeral-modifying adverb more than
dVi adverb directly attached to verb always
d verb-phrase-modifying adverb in the house
n anteriority simultaneous, anterior
Ad comparative adverb more
common noun (without determiner) | red house
ar cardinal number seven
declarative clause, with all tenses she looks at this
om complement of copula, such as AP very warm
on conjunction and
e determiner phrase those seven
igit cardinal or ordinal in digits 1,000/1,000th
Ad interrogative adverb why
Com interrogative complement of copula where
De interrogative determiner how many
interrogative pronoun who
m imperative look at this
nter, interjection alas
common noun house
relational noun son
N three-place relational noun connection
NH noun phrase (subject or object) the red house
Nuﬂ number determining element seven
| Numera cardinal or ordinal in words Sfive/fifth
I ordinal number (used in Det) seventh
Conj phrase-beginning conjunction therefore
N, proper name Paris
h phrase in a text but be quiet please
ol polarity positive, negative
redet| predeterminer (prefixed Quant) all
re preposition, or just case in
Pro personal pronoun she
C question clause, with all tenses why does she walk
question where did she live
uan quantifier ("nucleus’ of Det) this/these
relative clause, with all tenses in which she lives
relative pronoun in which
IThe original synopsis document is available

http://www.grammaticalframework.org/lib/doc/synopsis.html
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relative

in which she lived

declarative sentence

she lived here

embedded sentence or question

that it rains

subjunction

if

temporal and aspectual features

past anterior

tense

present, past, future

text consisting of several phrases

He is here. Why?

sentence, question, word... be quiet
one-place verb sleep
two-place verb love
verb with NP and AP complement paint
verb with NP and Q complement ask
verb with NP and S complement tell

V2 verb with NP and V complement cause

V3 three-place verb show
adjective-complement verb look

verb phrase

s very warm

| [VPSlash verb phrase missing complement give to John
v question-complement verb wonder

v sentence-complement verb claim

_m verb-phrase-complement verb want

vocative or "please”

my darling

Lexical Categories

A,A2)N,N3,N3,V.VA.VS.VQ.VV.V2 V2A V2S5, V2Q,V2V V3 are lexical categories and their constructors
are given in the at the end of the appendix.

Syntax Rules and Structural Words

Source 1: |../src/api/Constructors.gf
Source 2: |../src/abstract/Structural.gf

AP - adjectival phrase

Function | Type Example

mkAP A -> Eng: warm
Hin: T&®
Nep: drar
Pes: aX
Pnb: &
Snd: axX
Urd: ‘A;

mkAP A -> @ -> @ Eng: warmer than Paris
Hin: §fw & e

: U weaT e

Pes: sl 31 5 a5

Pnb: 5 48 Gu

Snd:

Urd:

ﬁ; ]
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mkAP

Eng:

Hin:
Nep
Pes:

she is ready to sleep
IE T R A G
: ST e TR B

ol Ganlsn salal

Pnb:
Snd:

Urd:

e o5 S s a9

mkAP

Eng:

Hin:
Nep
Pes:

Pnb:
Snd:
Urd:

very old
T LT
e

15 e
80 ple
Lajss oy

mkAP

Eng:

Hin:

Pes:

Pnb:

very very old

AT Fgd del
;8T AT qar
150 e

Snd: gais alaals

Urd:

LaSss com o

mkAP

Conf ->AH ->AH > RH

Eng:

Hin:
Nep
Pes:

Pnb:
Snd:
Urd:

old or young
gt AT ST

: &I STET ST
Ol b o

Slsa L 1se
Olsa b a3y
Ols> b Laje

mkAP

Conj —> ListAH -> AH

Eng:

Hin:

Pes:

Pnb:
Snd:
Urd:

old , big and warm
: F&T, ZAT T qTar
2S5 Sok on

G 3 15 lig

aS f sl o8l

2 ool 15 Lass

mkAP

6
E]

Eng:
el
Nep:

Hin

Pes:

Pnb:
Snd:
Urd:

oldest

LEREARC
U2 o

1368

s

Lafigr oo o

mkAP

CAQ —> AN > NH -> AH

Eng:
Hin:
Nep:

Pes:

Pnb:
Snd:
Urd:

as old as she

AT g ST a8
IAT ST T
ol s elsl g

sl obia g Sl

LI EPE TIPS
~9 Laa Lajes Lol
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AdA - adjective-modifying adverb

Function

Example

almost_AdA

Eng
Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

: almost red
THRLET ATA
ELSREIS

o8 L s

JY L&
ST I
JY LS

quite_Adv

&

Eng:

quite

Hin: FTHT

Nep:

Pes:

Pnb:
Snd:
Urd:

IS
Ml
~llales
bl
Jisela

too_AdA

&

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

too warm

very_AdA

E]

Eng:
Hin:
Nep:

Pes:

Pnb:

Snd
Urd

very warm
agd TH
&Y qrar
PS.QPNTEN

05 e

D as ala

DS S

AdN - numeral-modifying adverb

Function

Example

almost_AdN

Eng: almost eight
Hin: T#ad o5
Nep: UL A5
Pes: cuia Lo,
Pnb: all L&
Snd: &l S s
Urd: aii Lu,&

El

at_least_AdN

Eng: at least eight
Hin: 7 ¥ 7 75
Nep: FHHHRT ;S
Pes: coia Jilaa
Pnb: il oS 155 oS
Snd: &l @S g @S

Urd: ai oS 5l oS

at_most_AdN

Eng: at most eight
Hin: SIS § TTET 18
Nep: TEHT S

Pes: cuia JKlaa

Pnb:
Snd:
Urd:

A5l sl s sk
&) S IS i

AT Aol s A0l
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mkAdN CAdY > @ Eng: more than eight
Hin: 35 & SAT&T

Nep: WvaT 9@l A5
Pes: cuia 5 i
Pnb: all 5 b

Snd: &l i K ol
Urd: ol oew all

AdV - adverb directly attached to verb

Function Type | Example

always_AdV | AdV | Eng: always
Hin: g8
Nep: @#
Pes: ddinaa
Pnb: iy
Snd: Aduaa
Urd: -1V

Adv - verb-phrase-modifying adverb

Function Type Example

everywhere_Adv | [Ady Eng: everywhere
Hin: 27 5Tg
Nep: SITdT ad
Pes: s ;a

Pnb: ylas
Snd: iia ,a

Urd: SAJ.)

El

here7from_Adv Eng: from here
Hin: 78t &
Nep: Jgf a1
Pes: laul

Pnb: UJ.A:n:ﬂ
Snd: ailia
Urd: oo ol

E]

here_Adv Eng: here
Hin: 7gf
Nep: Tgl
Pes: laul
Pnb: _aul
Snd: ia

Urd: Lz

|

Eng: warmly
Hin: T¥H
Nep: @Tar T
Pes: aX

Pnb: &
Snd: axX
Urd: ‘A;

mkAdv @ ->

Z]

g
E)

mkAdv Eng: in the house
Hin: =X §

Nep: =L AT

Pes: <la o

Pnb: Cj).Ag

Snd: 4 a8

Urd: Qﬁjﬁ
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mkAdv

mkAdv

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

when she sleeps
FF g |l
et o Aqfea
wlea oo sl S (5
el gtis sl osS
@ ha £ pala
I i R

CA =W >

= By

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

more warmly than he
IH | AT TH

I WeaT FE qrar

ol A a X

=5 st syl

aS Sy LS sa

aS il g gl

mkAdv

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

very warmly
T
¥ qIAT T
IS JPNCEN
=5 S
S ples
pS S

mkAdv

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

here and now
REIRSE Bl
Yl 5 sl
a5t & Ay
ila & ia

<ol sl ol

mkAdv

Conj -> [ListAdy -> [AdY

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

with her , here and now
I F I, AT AT AT
ST HT, ARE T S
NPICHINNT

G5t S el JU 2o (sdy)
ila £ (a ol 5o

ol sl ol Al S Gl

somewhere_Adv

El

Pes:

Eng:
Hin: Fgl
Nep:

Pnb:

Snd:
Urd:

somewhere

T
sl
i<
o
2 onS

there7from_Adv

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

from there
FRH
R
L

syl

olia

e by

there7to_Adv

E]

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

there
ERIES
gt T
Y
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there_Adv @ Eng: there
Hin: @@l
Nep: @&t
Pes: i
Pnb: _ail
Snd: 3l
Urd: by
Ant - anteriority
Function Type | Example
anteriorAnt And Eng: she has slept
Hin: g &7 ‘fﬁ g
Nep: 3T {
Pes: el sanlsa 4l
Pnb: .l oK s gl
Snd: ool Jadews £
- Urd: o oS s 09
simultaneousAnt | [Anf Eng: she sleeps
Hin: ag |11 g
Nep: 31 gfcg

Pes: wlsa oo ol
Pnb: o) saigw o
Snd: (3 Aas F5a
Urd: o iges -5

CAdv - comparative adverb

Function

Type

Example

as_CAdv

CAdy

Eng: as

Hin: 41
Nep: St
Pes: s s5luil
Pnb: Ll
Snd: (Fea
Urd: Ll

less_CAdv

[CAdY

Eng: less
Hin: &9
Nep: &®H
Pes: i<
Pnb: &<
Snd: e
Urd: o<

more_CAdv

EAqy

Eng: more
Hin: $TaT
Nep: =@l

Pes: i
Pnb: 25

Snd: K3y
Urd: sl
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CN - common noun (without determiner)

Function

Example

mkCN

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:
Urd:

house
ord

a7
ala
Y
<
<

mkCN

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:
Urd:

mother of the king
TIST T SATHT

bL..ZJL.g JJLc

ol gu ~Lasls

obe S ALl

mkCN

Nd > NO -> NP -> CN

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:
Urd:

distance from this city to Paris
oo =7 =9 w8 ¥ wrEar

ofew afE a7 wge av @ g4
sl B it ol 51 leals

mkCN

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:
Urd:

distance
FTHAT

5l

dald

ALals

mkCN

IIIE]
5
2l

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:
Urd:

big house
EELRES
ZeT 7Y
Sneals
BEkP)
S 53
< 15

mkCN

Eng:
Hin:

Nep:

Pes:

Pnb:

Snd:
Urd:

big blue house
EELELEIRCES
zar faar =%
Som el g sla
A Ly
BYAETHIRRY)

A3 I

mkCN

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:
Urd:

very big blue house
FET AT AT =AY

% et et o

S ks ol s sla
A 15y e

AS 550 gdgalad

A8 M 15 s

mkCN

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:
Urd:

man whom she loves

SEHT 59 T 98 =T AT 2
HIe ST ATE ST ATAT M
Dl Sreugs 51 € (5450

el saS Lly sl s o s

@9 S e Fea Ol i sails
et S oy s S pun o]
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mkCN

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:

Urd:

old man whom she loves

TaT T 5 1 a8 = FdT 8
FET ATvey ST AT ST /AT TR
B8 ciggs 9l S (gom 9y

el @S sl sl Gsh o~ 1

@5 S B Pea Ol paia saile oalsy
et B8 oy s S un ol Lafss

mkCN

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

house on the hill
TETE T AT

o3 TETE /T

W s Gl
@Sl s

Olis 58 a8

8 5 55l

mkCN

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

big house on the hill
qels AL aET =Y

AT 9T TS A
ENFPTSLSSARPRNIEN

&l sk a8 15y

Obe S8 oS o3y
o815 5 s

mkCN

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

reason to sleep
I FT To7g

T AT LT
Oanlsa Jods

2 S g

mkCN

Eng:
: "I & asig
Nep:

Hin

Pes:

Pnb:
Snd:
Urd:

reason to sleep

oA 1T FT
Oamlsd Jalo

2 S g

mkCN

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

king John
NEIEIG)
T
Ola slaialy
ols ~Laal
ols alaal
ols ALl

mkCN

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

old king John
T TSI ST
TR T S
Ola s alanly
ola ~Lsals iss
Ol alaaly 23
Sla ~Laals ey
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Card - cardinal number

Function

Type Example

mkCard

Numera] -> [Card
Hin: |19
Nep: &1d
Pes: c.ida
Pnb: o
Snd:

[uiver]

Eng: seven

Urd: olw

Cl - declarative clause, with all tenses

Function

Example

genericCl

Eng: one sleeps
Hin: Eﬁ—g grar %’
Nep: FTEI G5
Pes: wlsa (g aui
Pnb: .| laigew oS
Snd: & e 7S
Urd: o bses 558

mkC1l

El
v
=0
v
e

Eng: she sleeps
Hin: 7 #17
Nep: 3T ﬂ'@_{
Pes: wlsa o ol
Pnb: _I (Sdigen
Snd: 3 hew Fsa
Urd: 4 ¢l 5

mkCl

Eng: she loves him

Hin: g S & =T FAT §
Nep: 3T 3 @TE ATAT e
Pes: J_)l.J gl |_) 5'\9'

Pnb: o) a8 sby sisl o
Snd: o5 S Baie Ol 54 F5a
Urd: o o35S sk S ol s

mkC1l

RS WES e

Eng: she wants to sleep
Hin: g TT =T8T &
Nep: ST q ATE &
Pes: wlsas aalsa o 4l
Pnb: o) sails Lisw
Snd: 3 aly Haaw 554
Urd: o shils Gsws -y

mkC1l

KA ->NS->8->0

Eng: she says that I sleep
Hin: 72 %21 & FF & avar 2
Nep: 34T ‘%Tf:ﬂﬁﬁ' H g

Pes: aslsh (0 o0 € K (o0
Pnb: uIJ |J.’|‘9.a_uu.|.a < | ‘54?5 _9'
Snd: § Glasw Hle & (63 (g5 Fsa
Urd: (s Ggew pe S 9 658 Ay

mkCl

NE > Vd —> Q3 > [

Eng: she wonders who sleeps

Hin: 9g g0 gt g fr fi qar
Nep: AT =0 giegmhl FT e,

Pes:
Pnb: ol laises 58 S 2l (aiss ol
Snd: 5 e 58 O (o3 o Olnd Tsp

Urd: o Goes 068 S o 0 Ol s
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mkC1l

Hin:

Pes:

Snd:

Eng:
Nep:
Pnb:

Urd:

she paints it red

g TH DI ATA TN FAT &
ST AT ATE AT DT AT A
oS oe S 338 1y o1

el S S5 Y sl

5 S Sy 2305 S a £sa
ot 58S K JY S gl

mkCl

NH -> V24 -> NH -> A > ]

Hin:

Pes:

Snd:

Eng:
Nep:
Pnb:

Urd:

she paints it red

TE TH T ATA TN FLA ¢
ST AT ATE AT AW AT A
A e K 338 1y o1

el s K JY psul

5 S Sy 52308 oS a £sa
et S S JY Sl

mkCl

Hin:

Pes:

Snd:

Eng:
Nep:
Pnb:

Urd:

she answers to him that we sleep
g S & Saa T 8 Fgwaa §
I I 1% I fefrgent grige gt
plsd (oo Lo € nan (o lga ol 4

Ol s sl S 2l s Olsa o5l !
B ostan Glal & (5 ol Clsa (oS 58 £ 5a
O g oy S o ot ol S Gl o

mkC1l

Hin:

Pes:

Snd:

Eng:
Nep:
Pnb:

Urd:

she asks him who sleeps

g 9 8 AT g fF waar g
ST 3 FT G BT T
Slon oo (oSt deuyy o0 5l 51

el Taiges 0SS 2l (gaany sl !
5 e S 5 (3 e OIS 58 Fa
et lsas (S S o ohagy oo il 5

mkC1l

NH -> V2V -> N -> VB > ]

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

she begs him to sleep

T I | I A |G A6 8§
I I ATE oA AT T,
sl 4 e alsa gl 51
el Sike (g9 Liges (535! !

et oS il (oS s oo gl o5

mkCl

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

she is old
AN
ERlECREE
cual s !

el dse !
bl 235 7 5a
=t oAl

mkCl

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

she is older than he
T 36 T T ¢

IAT 3 AT AR B
el 5151 5 o

el isus sl s
ol a%s O 58 P52
ot ediss o gl o

mkC1l

NH - A9 -> NH -> [

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

she is married to him

g 9 I TSN IET &

S 3 3 Frartea fo

ol Jalia 5l
0ooooooooo

d»m 15“L‘i‘ cu.twl ~3
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mkC1l

Hin:

Pes:

Snd:

Eng:
Nep:
Pnb:

Urd:

she is very old
¥E AT T &
ERLEREHRET
R RPTE ]

el s o ol
bl (o855 plai P 5a
ot A S A

mkCl

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

she is the woman
e AT &

IAT ATEATE T
Sl O gl

:I ;s“l-‘.) JI

w2l gl Fsa

ot S8 A9

mkCl

NH - €N > [

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

she is a

T T AT &

ST AT AEATE
el 5 05 !

el il i o
PERES TS STIE AT
=t S5 A5 9

mkCl

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

she is here
e 78l &
ERLREREE
Caal Loyl !
el eanl ol
ool (38 Fsa
ol

mkC1l

NH - VH -> ©

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

she always sleeps

ot e ~dnay A9

mkC1l

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

there are many houses
S
At GlA gulsy slaad

JRISY NIy N v

ol a8 LS la

ot A by e

mkC1l

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

it is she who sleeps
T 2 ST A €

IAT g ST Alea
wled g € Cuul

el s g5 ) !
@5 e (s5An o) F5a
o i 9 A9

mkC1l

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

it is here that she sleeps
Tel 7 A1l &

Tt ST giead
la oo gl Loyl

cl i sl AR

o -hass P oh (s3A

et @ises ~9 ol
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mkC1l

=]
e

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

it rains

arfer grar &
auf g

wl e oLk
cl I-‘:LH JUL'

et sy il

mkCl

Pes:

Eng:
Hin:
Nep:

Pnb:

Snd:
Urd:

it is raining

AT 2T T R

l o bk wla
:I ‘ﬁé I*‘:“H u’o'—'

= L!JJ-! uful-.'

mkCl

el

Pes:

Eng:
Hin:
Nep:

Pnb:

Snd:
Urd:

that she sleeps is good
frag O g s g
I gicgA Ty
Sl Cod wled e gl oS
o lanl o) gaise 5l S
b s (5 (oha Foa o
et bl o s 5 S

ClSlash

Function

|

Example

mkClSlash

ISlas

=E

=N3>

|

Eng:
Hin:
Nep:
Pes:

Pnb:
Snd:
Urd:

whom does she see
o =1 a8 TEdr g
FTHATE IAT
Sy e ol ) oS 4o
X STRLINTS

@5 el £sa S

ot SIS 1 oS S

mkClSlash

E
]

1Slas

el

->NT->

—_—

Eng:
Hin:

Nep:
Pes:

Pnb:
Snd:
Urd:

whom does she want to see
oy i1 og 3T wTedT &
FTEATE, IAT & ATl

S aalsn oo gl | S dn

el aily LSy ol (S

o5 oaly Gl £a S

ot ol LaSs 5 S S

mkClSlash

[ZlSlasﬂ -> Iédyl -> K}lSlasH

Eng:
Hin:
Nep:
Pes:

Pnb:
Snd:
Urd:

whom does she see today
e = oot ag 3@t §
FTEATE S AT &l

S o0 51 S9xel | oS
PINZEE ST VT

3 o 32 T S

et @S g BT S S

mkClSlash

NH -> VS -> BSlasl -> ClSasH

Eng:
Hin:

Nep:
Pes:

Pnb:
Snd:
Urd:

whom does she know that we hadn’t seen
fafag T d g fF e T @ I5 &
HIHATS IAT ATET TS el THIGE GLhTHITe
g ot Lo S wils o gl ) S 45

ol oS 2y (ol S Ll ails 5l S
Ol G pend Ll & (S Sls T LS

A Se A Gt o S ol 9 S S
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Comp - complement of copula, such as AP

Function Tﬁ)e Example

mkComp -> Com Eng: to be old

Hin: g&T1
Nep: q&r
Pes: OH8s o
Pnb: lig
Snd: sa%s
Urd: Lajs

mkComp N -> [Comgd | Eng: to be this man
Hin: a8

Nep: ar TIT%

Pes: a3y ol

Pnb: -

Snd: sails o

—_— Urd: LS.A\J'I ~

mkComp Ady -> [Comy | Eng: to be here

Hin: =gt
Nep: T&f
Pes: Guss Lol
Pnb: _aul
Snd: 3a
Urd: Lz

Conj - conjunction

Function Type | Example

and_Conj Coni | Eng: here and now
Hin: 7l % o1
Nep: 72t ¥ et
Pes: ¥la 5 Ll
Pnb: (s &5 oaul
Snd: ila £ ia
Urd: ol sl ol

both7and_DConj

E

Eng: both here and there
Hin: 4T 7l i< agt
Nep: @ gt T gt

Pes: il aa 5 laisl aa
Pnb: aisl 5 oAbl g90
Snd: 3 £ sia o

Urd: ol sl Gl wsiss

if_then_Conj Conj | Eng: if here then there
Hin: 00_0000_ 0000
Nep: afg 7l a7 gl
Pes: i o K51 Lol I
Pnb: il 3 anl S
Snd: 3 & i akKa
Urd: ybs 5 obe S

]

or_Conj Eng: here or there
Hin: 7gf a7 agf
Nep: =gt 2T gt
Pes: i b Lyl
Pnb: il L il
Snd: 3 L gha
Urd: gl b ol
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Det - determiner phrase

Function

Example

Type
a_Det ﬁ
Hin:

Pes:

Snd:

Eng:
Nep:
Pnb:

Urd:

a

lory

kY
als <
<
oS
S

E]

every_Det
Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

every woman

[
LERE I ECIEY
OO
&b
Gl Ko 5a
se

few_Det
Hin:

Eng:

Nep:
Pes: 3
Pnb:
Snd: (.
Urd:

few women

T i

many_Det
Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

many houses
g W

T EE

Gl galyy alass

A by e

K GBS

A absy e

Quanﬂ -> @

mkDet
Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

this

ag
+

ol
|
e

~

Quanﬂ -> M -> @

mkDet
Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

these five
T2 T

o af=r

& ol

& el
o
sk~

Quan{ —> Drd —> Def

mkDet
Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

the fifth
CIECH
Ti=t

ols &

mkDet

Ezuanﬂ -> Nunf -> @

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:
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mkDet

Card > Del

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

five
=

q=
S
el

mkDet

Pror > Nuni -> Def

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

my five
T I
R
T oo

oy e
&l s

somePl_Det

E

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

some women
Fg A

FET AMEATE R
O i

olsby ass
Ol 2
Utiyse A

someSg_Det

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

some wine
RERIES
FIET AT
obd gslade
b S
RPN
ol 23S

that_Det

Eng:
. 93 e
Nep:

Hin

Pes:

Pnb:
Snd:
Urd:

that woman

RIEIECIES
05 0l

@3 s
el San

Sse A9

thePl_Det

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

the houses
a7

TEE
Gla

1332

theSg_Det

El

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

the house

AR

the_Det

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

o~
>
3

house

AR
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El

these_Det Eng: these women

Hin: ¥ sfied
Nep: o 311’%‘1'@{6
Pes: 5 ol

Pnb: Ll o
Snd: (el o
Urd: i5e ~

this_Det @ Eng: this woman
Hin: 7 3feq
Nep: I SMEATE
Pes: 3 ol

Pnb: by o
Snd: (il oa
Urd: &jse

E

Eng: those women
Hin: ¥ et

Nep: ﬁFﬁg’E 3“%‘“@%'5
Pes: 03 ol

Pnb: Ly -5

Snd: eyt &Saa
Urd: iyse ~9

those_Det

Digits - cardinal or ordinal in digits

Function Example

Type
mkDigits ﬁ)» Digits Eng: /4
Hin: ¥
Nep: ¥
Pes:
Pnb: ¥
Snd: ¥
Urd: ¥

mkDigits | Dig -> Digity -> Digity | Bng: 1, 233, 86
Hin: S£¥3332¢

Nep: 2333%¥<%

Pes: 0000000

Pnb: SAFYYYA

Snd: SAFYYYA

Urd: SAFYYY)

TAdv - interrogative adverb

Function Type Example

howSmuch_IAdv | [Ady Eng: how much
Hin: faer

Nep: ¥

Pes: jaaa
Pnb: L<
Snd: 1is<
Urd: L

how_IAdv [Ady Eng: how
Hin: &9
Nep: FaL
Pes: ,sha
Pnb: <
Snd: <
Urd: oS
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—

mkIAdv

Pred —> [0 —> [Ady

Eng: in which city
Hin: FI & g7 &
Nep: & gL AT
Pes: ,pdalsS o
Pnb:

Snd:

Urd: (oo ped oo 065

mkIAdv

Ady —> Ady —> [AdY

Eng: where in Paris
Hin: &gl 9g &
Nep: gt qfe AT
Pes: S Guky 5o
Pnb: g9 gum o4
Snd:

Urd: oee g 0bS

when_TIAdv

[Ad]

Eng: when
Hin: &%a
Nep: g
Pes: <
Pnb: <
Snd: ;aX
Urd: <

where_TAdv

[Ad]

Eng: where
Hin: #gf
Nep: #gf
Pes: k<
Pnb: _ax
Snd: X
Urd: LS

why_IAdv

Ay

Eng: why
Hin: It
Nep: &
Pes: I,

Pnb: (<
Snd: >

Urd: sS

IDet - interrogative determiner

Function

Example

how8many_IDet

Type
iDe)a

Eng: how many houses
Hin: fFae =

Nep: &dl 9T a7g%

Pes: <la ain

Pnb: £ i<

Snd: a8 IA<

Urd: &£ o

mkIDet

!Quanﬂ -> [ﬂuﬂ -> iDeﬂ

Eng: which houses
Hin: #I9 & I%
Nep: $9 TLg®

Pes: 4l sl

Pnb: ,a< _5<

Snd: oS Kaa

Urd: a8 1w o<

145




mkIDet

!Quanﬂ -> [De

Eng: which house
Hin: 9 9T ¥¥
Nep: F7 =X

Pes: <la ol
Pnb: ,a< 55
Snd: ,a< Saa
Urd: &8 Lu S

which_IDet

et

Eng: which house
Hin: %17 |7 #%
Nep: $ =X

Pes: <la sl
Pnb: a5 155
Snd: oS s
Urd: ;a8 Lu o<

IP - interrogative pronoun

Function

Example

mkIP

%e» ON > i

Eng: which five big cities
Hin: #9 & 979 9¢ AT
Nep: T T ZoT A2%g®
Pes: Sy sed @y plS
Pnb: b oy @y o258
Snd:

Urd: pd o5 @l oo 065

mkIP

Eng: which five cities
Hin: F19 & T7= &<
Nep: T T9 MR
Pes: gk iy plS

Pnb: & @y 58
Snd:

Urd: b @l pow 0SS

mkIP

[Det -> H

Eng: which five
Hin: &9 & 77
Nep: T 9=
Pes: @iy al<
Pnb: @iy 255
Snd: @iy K
Urd: gl oo oS

mkIP

[Quan{ -> @ -> E

Eng: which big city
Hin: &I 9T 9T 7g<
Nep: F ZT Te¥
Pes: S, b pl<
Pnb: e 1 158
Snd:

Urd: s 15 L oS

mkIP

[Quant -> @ -> @ -> E

Eng: which five big cities
Hin: #19 § 77 a8 e
Nep: T 719 ZoT Ta%a®
Pes: S, b gy plS
Pnb: b oy @y 258
Snd:

Urd: yd o5 @il oo 0
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-> E Eng: who in Paris
Hin: ¥ & %19
Nep: e a7 &t
Pes: panl 59 oS
Pnb: oS &5 s
Snd:

Urd: oS oo g

mkIP GBS

whatP1_IP E Eng: what
Hin: 1

Nep: #

Pes: alajs 4o
Pnb:
Snd: L
Urd:

=l

what_IP Eng: what
Hin: =41
Nep: &
Pes: s3a &
Pnb:
Snd: Ly
Urd:
wh

whoSg_IP E Eng:
Hin:
Nep: &
Pes: S an
Pnb: ;<
Snd: <
Urd: o<

who_IP E Eng: %)Z-o
Hin:

Nep: &7
Pes: oS 4a
Pnb: ;<
Snd: <
Urd: o<

IQuant

Function Type Example

which_IQuant uan Eng: which house
Hin: FI9 9T =T
Nep: $7 =X

Pes: <ls ol

Pnb: oS 15<
Snd: < i
Urd: a8 L o<

Imp - imperative

Function | Type Example

mkImp M -> lmd Eng: come
Hin: &7
Nep: S B8
Pes: L
Pnb: LGi
Snd:

Urd: Li
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mkImp @ -> @ -> Eng: buy it

Hin: T FT giaar
Nep: ?ﬁﬁh_r[@?
Pes: jas 1, i

Pnb: Laya Gsul
Snd: S wy

Urd: Luya Sl

ImpForm

Function Type Example

pluralImpForm [mpForn] | Eng: be men
Hin: st
Nep: ATEEE gl
Pes: ylaye

Pnb: oy

Snd: sails

Urd: wedi

politeImpForm [mpFornd | Eng: be a
Hin: sTaHt
Nep: m'@?
Pes: sy

Pnb: ~au
Snd: saile
Urd: =i

singularImpForm | [[mpForn] | Eng: be a
Hin: &t
Nep: W'@?
Pes: 4y

Pnb: ~au
Snd: sails
Urd: weul

NP - noun phrase (subject or object)

Function Type Example
everybody_NP NP Eng: everybody
Hin: 8T F1%
Nep: #at ST
Pes:

Pnb: < 5
Snd:

Urd: (5\55).,

Eng: everything
Hin: g% <90
Nep: &%H T
Pes:

Pnb: c‘:‘)!
Snd:

Urd: 5 »

El

everything NP

it_NP @ Eng: it
Hin: 7§
Nep: a1
Pes: i
Pnb: _|
Snd: Lal
Urd: ~
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mkNP

Quanﬂ -> E -> @

mkNP

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

this man
PRI
T ATy
aye ol
~di
stile oo
il

Quan{ >N >N

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

this old man

7E qGT ATTH
T e AT
o3 e Ol
i g
stile o235 o0
ool Lajss

mkNP

Quan{ -> Nuni -> @ -> @ Eng:

Hin:

Pes:

Pnb:
Snd:
Urd:

these five old men

I i gg MEAT

: T 91 qaT ATeRE

o e Ty o

i CSJJG‘& :I
sl Ly o0
0l A5 @il o

mkNP

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

the five old men
T g SEHT
ai= qaT ATeaEE
o e T

ot cjdz‘ C—‘a‘
saile Ll e
ol 855 @il

mkNP

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

the five men
o= SrEHT
ate ATeSEe
Lo

et &

ol gy

sl @l

mkNP

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

5 1 old men
oY g et
49 FeT HTEw
om e 00 s,
JERET :-19-.‘ \8
saile Lajsy VO
odl o235 VO

mkNP

Digitd > N -> NI

Pes:

Eng:
Hin:
Nep:

Pnb:

Snd:
Urd:

5 1 men
oy et
4 ¢ AR
e 00 L
PRV
saile VO
MJ'I Vo

mkNP

Prod -> N -> N

Pes:

Eng:
Hin:
Nep:

Pnb:

Snd:
Urd:

my man
BT IEET
T ATy
RIS
Aty Ly
il
&A.A] |_)...|.a
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mkNP

Gl
Bl

Eng: Paris
Hin: Tfw
Nep: ofa
Pes: ui,ly
Pnb: G
Snd: 00000000

Urd: Gy

mkNP

Prod > NI

Eng: we
Hin: g9
Nep: g‘l"ﬁ%’ﬁ
Pes: L
Pnb: ol
Snd: Ll
Urd: &~

mkNP

Quanﬂ -> M -> @

Eng: these five
Hin: g 9=
Nep: o7 af=
Pes: @y ol
Pnb: &y .
Snd: zy s
Urd: @L:” ~

mkNP

gl
E]

Eng: old beer
Hin: a7 foaaw
Nep: e faoe
Pes: ﬁ‘s}ml
Pnb: ul‘).& szJ'.'
Snd: olpd oa3s
Urd: un lajses

mkNP

Eng: beer
Hin: faax
Nep: faux
Pes: sl

Pnb: ol
Snd: ol
Urd: B

mkNP

Predef -> INH -> INTJ

Eng: only this woman
Hin: faF 7% siea

Nep: |1 IT AEATE
Pes: (3 ol bis

Pnb: by o) Gy
Snd: syl ob Gpa
Urd: SHse ~2 J)&A

mkNP

Eng: the man seen
Hin: ¥@T gaT Maet
Nep: AT, %{ T
Pes: sudi s uye
Pnb: au Lasy,
Snd: saile Jowd
Urd: swdl gy ey

mkNP

Eng: Paris today
Hin: st

Nep: ufem st
Pes: 3550 sl
Pnb: CI R
Snd:

Urd: suoml
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mkNP

Eng: John , who walks
Hin: ST, ST =47 &
Nep: S, ST f%@\?i
Pes: a9, o sl S yla
Pnb: _f laly 5 ol
Snd: 3 la 3an ola
Urd: o Gy 52 ola

mkNP

Conj —> NB -> NH -> NB

Eng: this woman or John
Hin: 7g 3¥a a1 S

Nep: a7 STEATS STAT STIF
Pes: gl Lo ol

Pub: ola L il

Snd: pla b gyl oo

Urd: pla b oyse

mkNP

OB ITmES

Eng: this woman , John or I
Hin: 7g sfiea | St a1 &

Nep: o7 AEATE | ST 7T 7
Pes: oo Lol 0 o

Pnb: (e b ola 505

Snd: gle b ol syl (oo

Urd: g bgls ojse w

that_NP

El

Eng: that
Hin: 93
Nep: &
Pes: i
Pnb: ~9
Snd: Saa
Urd: -y

these_NP

Hin: 7§
Nep: It
Pes: ¢l
Pnb: _|
Snd:
Urd:

this_NP

Eng: this
Hin: 78
Nep: a1
Pes: oyl
Pnb: _J
Snd:
Urd: ~

those_NP

El

Hin: 98
Nep: foze
Pes: i
Pnb: ~9
Snd: S
Urd: ~9
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Num - number determining element

Function

Type

Example

mkNum

Digitd > Nun]

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

21
R
R

\Y
\Y
\Y

mkNum

[ Zarg -> [[ﬂug

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

almost five
3 =

v ot

& S siaS

mkNum

Eng:

Hin:

Nep:

Pes:
Pnb
Snd

Urd

almost five
3 =
v i
e Lt
ek S sAaS

Ord - ordinal number (used in Det)

Function

Example

mkOrd

Eng:
Hin:
Nep:
Pes:
Pnb:
Snd:
Urd:

smal
g

lest

et

AT AT
i SesS

Lsax
EE
Lsas

o e

PConj - phrase-beginning conjunction

Function

Type

Example

but_PConj

Con,

Eng: but
Hin:
Nep:
Pes:
Pnb: <.
Snd:
Urd:

1

mkPCon j

Conj -> [PCon

Eng:
Hin:
Nep:
Pes:
Pnb:
Snd:
Urd: <
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otherwise_PConj

Con,

otherwise
BELI
AT
Ssen Cnlratsys
b
FRroo
AL

Eng:
Hin:

Nep:
Pes:

Pnb:
Snd:
Urd:

therefore_PConj

Con

Eng: therefore
Hin: =9 ferr
Nep: q:

Pes: Jalu et 4
Pnb: ol s
Snd: <
Urd: o ol

PN - proper name
Lexical category, constructors given in .

Phr - phrase in a text

Function

Type

Example

mkPhr

B ->Bh

Eng: she won’t sleep

Hin: ag 7! qruar
Nep: a’rﬁgﬁ@'ﬂ
Pes: aulsa aalsas
Pnb: S S 8
Snd: XA O (giihas £ oA
Urd: S Jsw oz A9

&l

mkPhr

5

Eng: she sleeps
Hin:
Nep:
Pes:
Pnb: _I (tign Kl
Snd: &

Urd: 4 ¢l -9

mkPhr

Eng:
Hin:

Nep:
Pes:

Pnb:
Snd:
Urd:

would she sleep
Wa’a"@l g

¥ I AT
anlsa oo sl L

g b gl (oS
i uli Foa s
S g g LS

Pol - polarity

Function

Example

negativePol

Type
Fol

Eng: she doesn’t sleep
Hin: 98 981 QT &
Nep: 3T gfeaer

Pes: wlsa oai ol

Pnb: .| guiss i
Snd: (3 G e Foa
Urd: ol oz ~9
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positivePol E Eng: she sleeps
Hin: 98 @0l §
Nep: 31 gftge

Pes: wlsa o ol
Pnb: o) saisw gl
Snd: 8 cAaw 5o
Urd: o s

Predet - predeterminer (prefixed Quant)

Function Type Example

all_Predet Predef | Eng: all the men
Hin: T9TH &Ew T
Nep: a4 A2
Pes: 450 (5 e
Pnb: au ol
Snd: salile (i
Urd: el als

most_Predet =Ercdeﬂ Eng: most

Hin: 99 F FTaT
Nep: ST

Pes: j<I

Pnb: ;5 sk
Snd: siaS IS s
Urd: 5 sl

only_Predet Eredeﬂ Eng: only
Hin: faf
Nep: 917
Pes: Lis

Pnb: J_).aa
Snd: Gya
Urd: \JJ.AA

Prep - preposition, or just case

Function Type | Example
above_Prep @ Eng: abowve it
Hin: 39 % 377
Nep: a1 ATf
Pes: i YL
Pnb: S sul
Snd: &e e
Urd: sl S ul

after_Prep @ Eng: after it
Hin: 38 % T8
Nep: ar ‘T%
Pes: 4 5 aa
Pnb: ax (55 sl
Snd: £ oIS 2
Urd: as S Gl

before_Prep re Eng: before it
Frel Hin: 29 9 98
Nep: a7 arfar
Pes: 4 5 Jsd
Pnb: L (s
Snd: Gy oo
Urd: e o ol
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behind_Prep

]

Eng:

Hin:

Nep:

behind it

Pes: i

Pnb:

Snd:

Urd:

by8agent_Prep

Eng:

Hin:

Nep:
Pes: i
Pnb:

Snd:

Urd:

by8means_Prep

]

Eng:

Hin:

Pes: i

Pnb:

Snd:

Urd:

ol

during_Prep

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

during it

= % FfHae
RIRRIC]

Ol dsk 5s

&9 e usil
AES A
by Sl

except_Prep

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

. except it

=0 % faamr
T IR
Ol
elya sl
F s 58
:b—‘-’-‘csu“l

for_Prep

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

for it

= & o

o7 ATRT

ol sl

D0kesly ool sl
&Y o

alS Gl

from_Prep

]

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

. from it

|
v 91e
MIRY
as ol
Ols ora
e ool

in8front_Prep

Eng:

Hin:

Snd: ¢
Urd:

in front of it

TH F G
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in_Prep

]

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:
Urd:

in it
=H
7T |7
Ol 49
Es sl
BN
oo o

on_Prep

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:

Urd:

on it
TH 9T
o7 AT
Ol s
a1 usyl
Obe o
22 ol

possess_Prep

]

Eng:

=T &
:ﬁwmﬁ

Hin:

Pes:

Pnb:
Snd:
Urd:

of it

o
la ysnl
o> b oa
K el

through_Prep

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

through it
HHEY
T JThd
Ol Bask 5
s uskl
Olanie o4
e pe o

to_Prep

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

to it
= &
o1 av
Ol
s okl
oaild
S ol

under_Prep

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

under it
EEIE]
I ESEE]
Ol

alas Gl
Olisa a
e S ol

with_Prep

]

Eng:

Hin:
Nep
Pes:
Pnb

Snd:
Urd:

with it
TH AT
;AT
ol

s Jb L sl
Obes 052
Al S u

without_Prep

Eng:

Hin:
Nep
Pes:
Pnb

Snd:
Urd:

without it

. oy foeT

Ol b

D oshs 08 (sl
Py IS 8
i Sl
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Pron - personal pronoun

Function

Example

he_Pron

Type
Ero;

Eng: he
Hin: 9§
Nep: 3
Pes: 4l
Pnb: !
Snd:
Urd:

i_Pron

Eng:
Hin:
Nep:
Pes:
Pnb:

Urd:

it_Pron

Eng: ¢
Hin:

Nep:

Pes: (i
Pnb: _I
Snd: Lal
Urd: ~

Y
~9
I
k-
q
o
oo

Snd: ol
o
it
R
oy
ol

she_Pron

Eng: she
Hin: 98
Nep: 39T
Pes: 4l
Pnb: !
Snd: #sa
Urd: ~3

they_Pron

Eng: they
Hin: ¥
Nep: Ig®
Pes: La i
Pnb: !
Snd: sl
Urd: ~9

we_Pron

H

Eng: we
Hin: g9
Nep: gFig®
Pes: L
Pnb: !
Snd: Gl
Urd: o~

youPl_Pron

Eng: you
Hin: @&
Nep: fawdizge
Pes: Lad
Pnb: s
Snd: glag
Urd: a3

youPol_Pron

Eng: you
Hin: s
Nep: TITE
Pes: Lo
Pnb: s
Snd: glas
Urd: i
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youSg_Pron Prod | Eng: you
Hin: T
Nep: fawr
Pes: &
Pnb: (&
Snd: (6
Urd: &

Punct

Function Type Example

exclMarkPunct unc Eng: yes !
Hin: gf
Nep: g3¥
Pes: L
Pnb: JL
Snd: La
Urd: b

fullStopPunct unc Eng: yes .
Hin:
Nep:
Pes:
Pnb:
Snd:
Urd:

questMarkPunct unc Eng:
Hin:
Nep:
Pes:
Pnb:
Snd:
Urd:

C gcr.t‘—%ﬂeﬁ < gg_'éfglr”ﬂie

QCI - question clause, with all tenses

Function | Type Example

mkQCl d—> @ Eng: does she sleep
Hin: 7 98 I &
Nep: % 31 gfegq
Pes: wlsa (e sl L
Pnb: o) gaise 5l oS
Snd: 5 chews Fsa L
Urd: o s ~5 LS

mkQCl E -> @ -> @ Eng: who always sleeps
Hin: & gHAT 91aT §
Nep: T T g1

Pes: wlsa (oo ddinad S <
Pnb: o) Jaises ey <
Snd: & oAew Aduas S
Urd: o g ~adinay 0S

mkQC1 M ->M->RC Eng: who sleeps
Hin: 1 717 %

Nep: Fr T

Pes: wlsa o S 4

Pnb: . laige o<

Snd: & oaew <

Urd: = G\,..u ;,\,S
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mkQC1

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

who loves her

FT I FI AT FLAT §
ST ATS /AT T

Bla g 1y 9l oS an

el 1S Sl asil oS

S S e Gl 52 S

et BS oly S el oS

mkQCl

H-> MV > VB > RaI

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

who wants to sleep
I TET AT §

AT A AR
VRGN
2l laily Ly o<

o Gils Gy oS

mkQCl

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

who says that I sleep

T FEdT & 6 F Far g

T Al | g

mlod oo 0o € WK o S
ols Jaises e S ) 1S S
5 olaam ole & 5 s S
ot bsas ae S o GBS (S

mkQC1

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

who wonders who sleeps
I &0 2rar € o6 Fi Jar g
T SR TGl A g

el Jais 5SS o Hadsy Gloas (S
S ot xS O S ol Glea LS
et bgew 08 S 4 gy Oloas oS

mkQCl

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

who becomes old
FIT T AT E
T T ga

Ab oo oS da
cl I-‘:‘:‘ Is}-’uﬁs

5 oD oads oS

e B Lajs (S

mkQCL

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

who paints it red

FIT T AT ATA T FEAT &
AT ATE AT M ATIEA
0 o K5y 305d ) O S 45
el IS & JY sl oS

S eSS 558 oS oa S
o BS S, JY S gl oS

mkQC1

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

who answers to him that we sleep
FXT I KT AT 2q7 & FoF g ara &
&1 T ATE 37 fargeal griiee qogt
plen o Lo € 080 oo Gl ) 4 S 4n
Ol ctises ol S ol 1553 Clsa sigl 0
B cistams olood & 55 3 Glon oS 58 S
ot sy S o B Olsa S Gl 05

mkQCl

0> V2Q > NH —> R -> RJ

Hin

Pes:

Snd

Eng:
: I I qEAr 2 6w Har
Nep:
Pnb:

Urd:

who asks him who sleeps

FT T T HTEGTAT AT TG

a0 oS o sy oo 5l O S 2
el Jaig G5S S o aaay sl 08
DS e 5S O 5 ey OIS 58 S

e bgew (S S g Bangy ow ool oS
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mkQC1

Eng:
Hin:
Nep:
Pes:

Pnb:
Snd:

who begs him to sleep
A SH F HA 0 WG AWTCT 2
T3 ATE G UL T
aalei S o Jualia o) 5l S 4a
o) 1K0Le 50 lise isigl 058

Urd: o B8 LAl S s s ol S

mkQCl

Eng: who is old
Hin: #19 9@T 8
Nep: FT &l I
Pes: cuul juy S an
Pnb: .l 135 oS
Snd: sl gajs xS
Urd: =t LAJ"J.: ws

mkQCl

Eng: who is older than he
Hin: &9 39 ¥ IaT 8

Nep: FT 3 =T q&l T
Pes: cuul o) 51 5 ya oS an
Pnb: o) 136 055 cosl oS
Snd: ol o235 OIS 54 58
Urd: o1 LA‘S‘J.' o uu| ‘_)\,S

mkQC1

Eng: who is very old
Hin: ﬁ?a@ﬁ'@%
Nep: &7 ﬁgﬁﬁ

Pes: cuul juy obd oS an
Pnb: o 155 oy S
Snd: gl gads ald 5
Urd: o Lajss oy oS

mkQCl

H-> NA > RCl

Eng: who is the woman
Hin: F19 3T §

Nep: T AreqTE g1

Pes: cuul ) oS 41
Pnb: o b oS

Snd: ol il 5S

Urd: 4 &yse 0S

mkQCL

Eng: who is here
Hin: %1 72t &

Nep: Eﬁ'q%'vl'a?[

Pes: ) lady) oS an
Pnb: .| .aul oS
Snd: al i ,<
Urd: o obe oS

mkQC1

[l —> CSlash -> QCI

Eng: whom does she love today
Hin: & #1307 98 =¥ F7dt @
Nep: FTHATE ST AT AAT T
Pes: uyla caga 5l 3550l [ S an
Pnb: o) suS sy sl gl oS

Snd: o S 3ae £50 gl LS

Urd: o o35S sl ~5 €168 oS

mkQCl

A -> 0] -> QC

Eng: why does she sleep
Hin: F7 a8 97l §

Nep: {3+t iIf\@T-[
Pes: wlsa o 5l L

Pnb: ol g 5l 05S
Snd: 5 cheis £ a5
Urd: o s ~5 05:S
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mkQC1

Eng: with whom does she sleep
Hin: & % =77 978 o1t

Nep: T &7 3T ﬁ'%_r[

Pes: wlsa oo 5l S 2 L

Pnb: o) gaisw 5l JU Lo I<

Snd: 8 aaw £oa Gl Ogias
Urd: o s ~3 Al S S

mkQCl

[AdV -> @ -> @ Eng: where is she

Hin: 9 #gl &
Nep: Fﬁ%‘vﬂ%ﬂ
Pes: cuul S 4l
Pnb: . &< 4l
Snd: sal K £ 4a
Urd: o LS -5

mkQCl

mkQC1

C Eng: who is this man

Hin: g AT #19 §
Nep: ?ﬁ'maﬁ'ﬁ
Pes: cuul oS da 350 ol
Pnb: o) oS ~an
Snd: gal LS saile oo
Urd: c’d’stl ~

Eng: which city is there
Hin: gt _EhSFT |1 WgT %
Nep: el T Me7 g

Pes: coul 4 als

Pnb: o) yd 158 ail
Snd:

Urd: g sy L 0S Ols

QS - question

Function

Example

mkQS

Eng: does she sleep
Hin: 47 g 9T 8
Nep: & 3T ﬂ'@_{
Pes: wlsa (e sl L
Pnb: :I (g Jl ‘SS
Snd: o5 saaw Fsa
Urd: 4 fsw 9 LS

Quant - quantifier ("’nucleus’ of Det)

Function

Example

mkQuant

Type
ﬁ -> Quant| | Eng: my house

Hin: AT =%
Nep: #3 =T
Pes: o s ula
Pnb: o< e
Snd: ,a<
Urd: a8 lyue

no_Quant

Eng: no house
Hin:

Nep: & =%

Pes:

Pnb: a8 a5 oS
Snd: )—Agu\}%
Urd: a8 a5 oS
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that_Quant uan

Pes:

Snd

Pnb: ,a< o
DS Saa
Urd: <

Eng: that house
Hin:
Nep: & =T

this_Quant uan

Pes:

Snd
Urd

Pnb: ,a< _|

Eng: this house
Hin:
Nep: 3T =X

RCI - relative clause, with all tenses

Function

Example

mkRC1

mEguEaTe

Eng: woman who always sleeps
Hin: sfied ST g7 9dt §

Nep: #TEATE ST 75 qoeg

Pes: wlsa o wiaas < )

Pnb: o) (gaises ~dinay 5 5
Snd: (o3 haw Adias (5an (g il
Urd: o s ~dinay o Sy9e

mkRC1

Eng: woman who sleeps
Hin: 3 ST &dt 8

Nep: #TEATE ST o5

Pes: wlsa o €€ 35

Pnb: o gaise 5 56
Snd: 3 hans Has (gl
Urd: o s s> Sse

mkRC1

RH > V3 > NH > RC]

Eng: woman who loves him

Hin: 3f¥d ST 39 7 X Ll &
Nep: 3MEATE ST 3 ATE HAT TE,
Pes: ls cuuga |y 5l € (o3

Pnb: ol oS sl ol e B
Snd: (3 ¢S Baie Sl 58 ($3aa (g5l
Urd: o o35S by oS ol s oipse

mkRC1

Eng: woman who wants to sleep
Hin: i ST /4T ATt &

Nep: STEHTE ST T AT

Pes: w5 aalsa o € o3

Pnb: o suils Lsw g5 o505

Snd: 5 ealy Saes Has (5l
Urd: oy ols s 2 cse

mkRC1

Eng: woman who says that I sleep
Hin: sf7a ST gt g BF & aar g
Nep: STEHTE ST Wegl | g

Pes: mlsa o 5o € S (0 S 03

Prb: s Mises s S o 638 s0m il
Snd: & Glaaw ple & 5 53 @ San @il
Urd: g1 Gsew gae S 9 o5S o2 Spse
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mkRC1

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

woman who wonders who sleeps

v ST 24 2rdl & {5 e 'ar g
STEATE ST TF el 0 Aol

el Taisw 08 S o) gaig Gl g5 50
S ohans 2SO o3 o8 Old (San (55l
et by 08 S o S Ol 52 Spse

mkRC1

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

woman who becomes old
T ST G aal §
STEATE ST A T
a9d (o0 o S )

el i ss i 8l

5 o a0 s5A (il

ot i A5 s Sse

mkRC1

Hin:

Pes:

Eng:

Pnb:
Snd:
Urd:

woman who becomes very old

I ST Agd &l a7t €

; arEaTE S At A gy

25 ooy old S 3

ol g i o e o3
@5 o @20 pled (HAs (55l
et i A5 Sy 9> Sse

mkRC1

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

woman who paints it red

YT ST 9 &1 AT 7 FAT &
STEATS ST AT ATE AT I ANSY
S a5, a3 |y o S )

e 6aS S5 JY sl g il

5 S K 58308 (oS oa (Ban (g5l
o 58 Ky JY Sl g mse

mkRC1

RH -> V24 -> NH -> AH -> RC

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

woman who paints it very red

T ST S T A AT AT g
ATEATE ST AT ATE % @l T ARMEE,
S a5 Jyd olid 1 57 € o35

el S S5 JY e ool s S

@5 S S a3l aldd (S o (S syl
o 5SSy JY o S ol s Spse

mkRC1

BH > 128 >RH > F—>Rd

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

woman who answers to him that we sleep
ST ST 39 AT o &t ¢ fF 2w wa g
AEUTE W1 3 TS I faraehl greigs qeagt
plon oo Lo 4S 10 oo lga 5l 4 oS ()

Ols ediso ol S 2l s Ol Ll e B
B ostan Glal & (5 ol Clsa (oS 58 ($3an (55l
ot g a S o ol Sl g opse

mkRC1

RH > v2Q -> NH -> RY -> RO

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

woman who asks him who sleeps
ST ST S § [T & (%6 i qrav g
STEATE ST T BT Fieegeht T Geg

A (o oS da gy o0 9 ) S (o3

el Iases (S S ol guany sl i S
S e xS 565 o O o8 (San il
ot b O S o S oo ol 9o Sge

mkRC1

5 [ AT g Vs By Vs [y 161

Hin:

Pes:

Eng:
Nep:
Pnb:

Snd:
Urd:

woman who begs him to sleep
ST ST 39§ | A HIE AT
ATEATE ST I @S oA AL T
silsis S n alsa gl 316 o35

ol ¢Sile (0 Lgen 39l gm0

et oS il (oS s s gl 52 opse
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mkRC1

mkRC1

Eng: woman who is old
Hin: $i%d &1 981 §

Nep: 311%5{1'% ST E;I’%’T =
Pes: ol yu €3

Pnb: o) sds o 30
Snd: o8l o255 G sl
Urd: o o5 s> Spse

Eng: woman who is older than he
Hin: Ra ST IT A&l ¢

Nep: SEATE ST T Weal T &

Pes: cuul sl 51 55 5 < 3

Pnb: ol gdss o8 cosl e i)
Snd: 8l ahs OIS 52 (3ax (55l
Urd: o s oo gl s opse

mkRC1

mkRC1

Eng: woman who is very old
Hin: i ST 9gd 961 §

Nep: HAEATE ST %ﬁ*g‘sﬁ@

Pes: cuul juy olis < o3

Pnb: o) 35 o i il
Snd: ol o 2he ald GSas g rial
Urd: o o255 oo 52 Opse

B - NH > Ra

Eng: woman who is the woman
Hin: 3 S &fiea

Nep: STEATE ST SMEATE g

Pes: el ) € o3

Pob: ol b5 i il

Snd: ol griwl 5as 55wl

Urd: o Spse s Spse

mkRC1

Eng: woman who is here
Hin: ed T o7t 2

Nep: ATEHTE ST ZIE'T' @
Pes: cul Ll € (3

Pnb: . oAbl gha b
Snd: 8l s Has gl
Urd: o Obe s Sjse

mkRC1

mkRC1

Eng: woman whom we love

Hin: i 9 &1 g% == e §
Nep: SATEATE ST ATL FTHIZE ATAT TG
Pes: ax,la cuuga Lo S (o3

Prb: s 25 oy ol st o i
Snd: B ;S Gae Glal Gl paia g0l
Urd: o 255 sl S o Spse

@—> 1Slash -> @

Eng: woman whom she loves today
Hin: e {9 #7 o1 a8 = &3t &
Nep: STEATE ST ATS &S ST WIAT TR
Pes: 4ls gy 5l 9l < (3

Pnb: ol oS ke 5l €1 ust o w3l

Snd: 3 58 Bhe 52 €1 Sl ala (g5l
Urd: o 38 sy 19 BT 58 un Spoe
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RP - relative pronoun

Function

Example

which_RP

%&e

Eng: which
Hin: ST
Nep: ST
Pes: «<
Pnb: 5
Snd: IGas
Urd: Ko

RS - relative

Function | Type . . __ | Example
mkRS Conj -> RY -> RY -> RY | Eng: woman who sleeps or whom we love

Hin: 3fied ST 91T & a7 59 &1 g9 = e &

Nep: STEHTE ST Heeg AT ST TS, THIZE HIAT TG
Pes: au)la cogs Lo S L wilsd oo S (03

Pnb: Oly 208 sy ol 053 o b 2 st 5 3L
Snd: B S Gadie Sl Glos paia b (5 tens 50 (g5l
Urd: o 55 oby pr oS un b oo g 9o s

S - declarative sentence

Function | Type

—

Example

mkS ([Tensd) —> (@) -> (Pol) -> @ -> E

mkS [Zo j ->

p—

mkS [Zo i -> Eistg -> E

Eng:
Hin:
Nep:

Pes:

Pnb:
Snd:
Urd:

she wouldn’t have slept
ERK) v

ST FATRg e

dlsa (oad !

AT Y

it & ul £ ea
R )

->

Eng:
Hin:
Nep:

Pes:

Pnb:
Snd:
Urd:

she sleeps and I run
SR el S G

298 (2 o 5 haled (oe

Ols 1a3s9 e & 2l (gaises
S 0Bssole & (5 (e 550
ast B399 oo sl o g s

Eng:
Hin:

Pes:

Pnb:
Snd:
Urd:

she sleeps , I run and you walk

FE T © , § qgar g T  Fwar 2

;o Ao, W g © ot feeah

G ool B 5 s o o wlsA e
ol b G55 2 Ol la3ss e 2 (sisen )
S oala 05 f 8Ol Gle (B e s
et bl &5 55l sr Bsd (ne o lisew 9

mkS A —>H->8

Hin:
Nep:

Pes:

Pnb:
Snd:
Urd:

: today she sleeps

A 98 |l §
EIEECCIR T
Sloa oo sl 9
e gt sl Tl
5 e T3 T
ot @iss ~9 E
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SC - embedded sentence or question

Function

Type

Example

mkSC

§->5d

Eng:
Hin:

Nep:
Pes:

Pnb:
Snd:
Urd:

that she sleeps
o ag @ 8

o vt afea
EUTENPRITENS

el i I S
PMJPV VIR GV
ot s a9 S

mkSC

]

Eng:
Hin:
Nep:

Pnb:

Snd:
Urd:

who sleeps

5 0 T
T B

Pes: wla oo oS 4n

el i oS
5 shaw S
et Gow oS <

SSlash

Function

Example

mkSSlash

Type
|iema -> Ei -> EilSlasH -> BSlas

Eng: she hadn’t seen
Hin: ag &l 3@ a7 o
Nep: 3T %%&FFW
Pes: ag sui ol

Pnb: o oS 25 o
Snd: 84 & Jawd £
Urd: a5 Sa aS00 s 5

Sub100

Function

E

Example

mkSub100

[ niﬂ ->

—

EublO!]

Eng: eight
Hin: 3%
Nep: 3@
Pes: coia
Pnb: il
Snd: 0 &l
Urd: aii

tenfoldSub100

[ niﬂ ->

EublO!]

Eng: eight
Hin: 33
Nep: 35
Pes: cuiua
Pnb: a3l
Snd: 0 &l
Urd: aii
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Sub1000

Function Type Example

mkSub1000 | [Unif -> EublOO!] Eng: nine hundred
Hin: 7 &7

Nep: AT 77

Pes: wag

Pnb: 5w s

Snd: s o

Urd: s 6

Subj - subjunction

Function Type | Example

although_Subj @ Eng: although she sleeps
Hin: sWef¥ 9g 9T 8
Nep: @t 3T {[ﬁa’-’{

Pes: wlsa oo 5l S 0l 3529 s
Pnb: o gaise sl Gasly

Snd: (3 haw £ 5a Sighan
Urd: = ‘53\5.‘“ ~9 ,.?;I

because_Subj @ Eng: because she sleeps
Hin: Fi{F 98 =t €
Nep: T st 11'%?[
Pes: wlsa o gl € 0l 5l
Pnb: o) gaige sl 2S5S
Snd: (3 saaw Fsa o5 8L
Urd: o s ~9 SisS

if _Subj Eubi Eng: if she sleeps
Hin: 3% 9g 9141 §
Nep: =fs ST ﬂ'r@_v[

Pes: wla o 9l € <I
Pnb: .l gaisw ol SI
Snd: 5 haw £oa ala
Urd: o g 29 S

that_Subj Eubi Eng: that she sleeps
Hin: fF ag a1 §
Nep: @ 3+t W

Pes: wlsa oo 5l < i
Pnb: =| (g jl <
Snd: & e 5o Lal
Urd: o i AJ,S

when_Subj Eubi Eng: when she sleeps
Hin: &a 98 97 §
Nep: Hfger 31 gfcad

Pes: wla oo 5 S 58
Pnb: o) gaisw o) oS
Snd: (3 oaew £sa pala
Urd: o b ~5 o
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Tense - tense

Function Type Example
futureTense ens Eng: she will sleep
Hin:

de |7
Nep: ﬁﬁcﬁ'@ﬁ;
Pes: aulsa salsa ol
Pnb: £ g sl
Snd: (suish gaiAais &4
Urd: S Jgew ~9

pastTense ens Eng: she slept
Hin: g 9y
Nep: 3t gfaq
Pes: aulsa 4l
Pnb: g gl

presentTense ens Eng: she sleeps

Text - text consisting of several phrases

Function Example

Type
mkText ﬁ—> (Euncﬂ) -> (@) -> @ Eng: does she sleep ? yes .
Hin: 7 98 |av g ? & .
Nep: % 31 qfeagd ? a9 .
Pes: 0l wloa oo o L
Pnb: . oL o gaisew sl oS
Snd: . L (8 ghes Foa ln
Urd: ol o olges 9 LS

mkText -> [Tex Eng: she slept .
Hin: a8 .

Nep: 3T ﬂ'ﬁﬁ[ .

Pes: aulsa ol

Pnb: . g s

Snd: . %A Jsres Fga
Urd: Ls:l\}«.u ~9

mkText @ -> [Cext] Eng: she sleeps .
Hin: 98 9T g .
Nep: It gfegd .
Pes: wlsa o gl
Pnb: . _ gaisw ol
Snd: . 8 cAew Fsa
Urd: o s -9

mkText @ -> iexﬂ Eng: did she sleep ?
Hin: 97 ag |17 ?
Nep: % 3T gfaq ?

Pes: awlsa ol Li
Pnb: sigw 5l oS
Snd: (FA Jstaws F5a Ly
Urd: iges 9 LS
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mkText

Eng: where ? here .
Hin: #gf ? 7@l . &a ? 3 |
Nep: Fgf ? a8t . Hfgar ? @ |
Pes: ¥ (< bl <

Pnb: . _aul A g oS

Snd: . ia (KK Gila ol

Urd: o S b o4

Unit

Function

Example

nl_Unit

n

Eng: one
Hin: TH
Nep: TH
Pes: <

Pnb: dI

Snd: <a
Urd: <l

n2_Unit

]

1

Eng: two
Hin: ¥

Nep: 3%
Pes: 50

Pnb:
Snd:
Urd:

n3_Unit

1

E]

Eng:
Hin:
Nep:
Pes:

Pnb:
Snd:
Urd:

¢ %@ f BPsfete

n4_Unit

E]

Eng:
Hin:
Nep:
Pes:

Pnb:
Snd:
Urd:

F44y

O C
e

n5_Unit

]

Eng:
Hin:
Nep:
Pes:

Pnb:
Snd:
Urd:

LERE FIE

n6_Unit

]

1

CA,(E

Eng:
Hin:
Nep:
Pes:

3
8

- 8 8

o
=)
lon

FEFS

Snd:
Urd:
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n7_Unit

]

1 seven

n8_Unit

]

n9_Unit

E]

Utt - sentence, question, word...

Function

Example

lets_Utt

Eng: let’s sleep
Hin: s €0
Nep: T4t

Pes: anlsas auly
Pnb: (s s
Snd: (e &
Urd: u:\:g.u 3]

mkUtt

r"]

Eng: she slept
Hin: &g =T

Nep: 3T ﬂ'ﬁl’-‘[
Pes: aulsa ol

Pnb: g

Snd: %A Jsrers £
Urd: (s -5

mkUtt

Eng: she sleeps
Hin: 98 I g
Nep: 31 gfcg
Pes: wlsa o0 ol
Pnb: oI gaisw ol
Snd: o8 caac Fsa
Urd: o dges -5

mkUtt

Eng: who didn’t sleep
Hin: 19 981 9047
Nep: T Tﬁ'rl’r{

Pes: aulsas S 4
Pnb: Lgw g oS

Snd: gal & Jstew ,S
Urd: Lsew s O
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mkUtt

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:
Urd:

who sleeps
FI H@T

FT oG
LA oo S 4n
<! IJ—"J“‘CUS
5 ohas S
et bsew (058

mkUtt

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:
Urd:

who

T
T
oS da
oS
=S
asS

mkUtt

TAd —> [0t

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:

Urd:

why
ER1I
o
ba
assS
5

oS

mkUtt

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

this man
Ig A=A
AT AT
Sy ol
~ais
stile oo
wodl 2

mkUtt

S|

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

here
72t

Y

qu
i
oyl
i
ol

mkUtt

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

to sleep

=T
qq

Odulsa
Liges
Y. v
Ligeu

mkUtt

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

good
=T

mkUtt

Card —> [0

Eng:

Hin:

Nep:

Pes:

Snd:
Urd:
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no_Utt @ Eng: no
Hin: T&l
Nep: gred
Pes: «
Pnb:
Snd: G
_ Urd: as
yes_Utt [Utd Eng: yes
Hin: gf
Nep: g<
Pes: 4L
Pnb: oL
Snd: La
Urd: o4

V2 - two-place verb

Function | Type | Example

have_V2 | [V2 Eng: to have it

Hin: 8 @1
Nep: ?ﬁgﬁ

Snd: 55 o
Urd: La<, ul

Pes: guals 1, i
Pnb: Lasl, ol

VP - verb phrase

Function

Example

mkVP

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:

Urd:

to sleep

qq

Oaxlsa
Ligeu
fy.vom
Ligew

mkVP

V3= Ng -> vA

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

to love him

I T T FLAT
3 TS /AT T

Gl cogs |

LS Sk Qs

O B Sl 58
LS Hby oS o)

mkVP

V3> NH -> N0 > v

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

to send it to him

ag 39 I ASAT

IT IJEATE ATS TBTI]
Oalensd ol (sl 1, O
asts) Ly (sl

Loty S Gl =

mkVP

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

to want to sleep
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mkVP

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:

Urd:

to know that she sleeps
ST o g e &

oTET ST 3T g
Bl o gl S Glails

s

oS shaw Foa & Hils

ot s o9 S Ll

mkVP

V>R3> 8

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:

Urd:

to wonder who sleeps

&7 EIT 56 I T 8
AT LA HT T

Lst Sl .
S e 58O G5 Gla
et bows 068 S gy Ol

mkVP

Eng:

Hin:

Pes:

Pnb:

Snd:

Urd:

to paint it red
TH T AT T FEAT

: TV ATE T 37 AWTS]

OIS S5, 308 1 o
JY LSS5, sl
S 5SS oS o
LS 5, JY S ol

mkVP

Eng:

Hin:

Nep:

Pes:

Pnb:

Snd:

Urd:

to answer to him that she sleeps

I T ST 27 {5 ag T E
3 AT IO fagat S giega
Bl o sl S als Gl sl 4
Las lsa (il

@5 s 58 & Gl Olea S 58
et i 9 S Laa Olsa S Gl

mkVP

V2 —>NO > QY —> VA

Eng:
: 39 ¥ IBAT fF FIF 9T §
Nep:

Hin

Pes:

Pnb:
Snd:
Urd:

to ask him who sleeps

3 BT HETHT FT G
Blsa oo oS 4o G 51
Liaas Ll

5 s 58 5 g OIS 58
ot U O S Bangy oo ol

mkVP

v2v = No = Vi =

Eng:

Hin:

Pes:

Pnb:
Snd:
Urd:

to beg him to sleep
I H H A A AT

: T ATE HA AT T

aalyi 5aS Gualsa ol 5|
©9 U}._u ke UJ:‘JI

LS Ll oS g oaw ol

mkVP

Hin:

Nep: 781

Pes:

Pnb:
Snd:
Urd:

: to be here

Tgl

URTTNENY
ety
wia

ol

mkVP

Eng:

Hin:

Pes: ¢
Pnb:
Snd:
Urd:

to sleep here

ugt?ﬁ?r

173




mkVP

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

to always sleep

FHIT ZHIT T
g qeq
Odnlsd Lies
Ligu

A

Ugs ~dinay ~diney

mkVP

VPSlash -> @ -> @

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

to paint it black

TH AT HTAT T HAT
T ATE FTAT T AT
O3S Sy sl 1y o

YE LS K sl

LE OS5 oS oa

LS &5y YK Sl

mkVP

VPSlasH -> @

Eng:

Hin:

Pes:

Pnb:
Snd:
Urd:

to paint itself black
GE T HTAT T HAT

AT TS FTAT HT ARTST

. QLT VPR RPEN
YK g8 asa LS K5,
HEESOL 5SS,
LS Ko, VIS S gon

passiveVP

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

to be loved
TOTT hTAT
EIDIRIE
Ol s Eauga
LGS ke

55 Gae
LS Ll

passiveVP

V3= Ng -> vH

Eng:

Hin:

Nep:

Pes:

Pnb:
Snd:
Urd:

to be loved by her
IH H WA FIAT
ERLCIERIRIR G
O ls Caagy o) bauss
asisl BS by
Oba 58 S 3
LS by oo ol

progressiveVP

VA —> 5

Eng:

to be sleeping

Hin: 5HT

Nep:

Pes:

Pnb:
Snd:
Urd:

Omlsa
Ligeu
[SY.v o™
Ligew

reflexiveVP

el
=]

Eng:
Hin:
Nep:

Pes:

Pnb:
Snd:
Urd:

to love itself
g2 FT AT FAT
T ATE AT T
- KRUTRR PUP-RTEN
asi s LS by
Ol Bl &S Bate
LS ol £ 252

174




VPSlash - verb phrase missing complement

Function Type

Example

mkVPSlash | [V -> [VPSlasH

Eng: whom does she see
Hin: f& %1 ag 3@dt &
Nep: Wﬁ%ﬁﬁ[
Pes: i g sl |y S 45
Pnb: cl LSJAS-IJ 3' u\,s
Snd: (& ol Fsa <

Urd: o1 o5aSs 9 S oS

mkVPSlash | V2A] -> @ -> —YPSlaSH Eng: whom does she paint red

Hin: & &1 ag I1er T #3718
Nep: FTHATE I+AT AT T ARMSEA
Pes: o 0 K5 3058 5l | o 4
Pnb: o) gaS &5 JY ol oS

Snd: 3 55 K, 58305 T8 5S

Urd: o 35 K5 JY 9 S S

mkVPSlash YQQ

-> F -> [VPSlasH Eng: whom does she ask where I sleep

Hin: f5& 7 9 Ta1 & 6 Faf § dar g
Nep: Wﬁﬁﬁﬁfﬁw
Pes: aslsa oo 50 oS gy (o0 5] S 4 )
Pnb: (ls Jaisn e a8 S o) gaaag ol oS
Snd: & plasw Hlo (8 & (o3 a0 Foa S
Urd: (s Bgaw e LS S o ltagy -5 S S

mkVPSlash | V29 -> E -> [VPSlas Eng: to whom does she answer that I sleep

Hin: fF Fr 9g sam@ et g R & A
Nep: FEATE 3T 30 fafrgmt 7 qog
Pes: alsa (oo 0 € 280 oo Gl ) S 2
Pnb: (s Jaigw (e S o) gaian Olsa ol (S
Snd: & Gl Gle & (5 oul olsa F5a S
Urd: (5 bsew e S o ot oy 5 S (S

mkVPSlash | V2V -> @ -> —YPSlaSH Eng: whom does she beg to sleep

Hin: T 7 98 a9 #1 W@ A0 §
Nep: Wﬁﬁﬂmﬂ%ﬁ;
Pes: wlsas oS e fialsh 5l S € |
Pnb: . Sl g0 Lguw 5l S

Snd:

Urd: o 38 il (S s A5 S S

mkVPSlash @ -> [VPSlash -> ﬁSlasH Eng: whom does she want to see

Hin: TFer &7 o8 3@ =Tedt &
Nep: Wﬁ%ﬁm
Pes: aiws sl oo 5l [ oS an
Pnb: ) guils LaSy 5l o<
Snd: (o3 ool Sl F5a S
Urd: o sy LaSs 5 S oS

VV - verb-phrase-complement verb

Function

Example

can_VV

Eng: to be able to sleep
Hin: 8T qT

Nep: T ]

Pes:

Pnb: sw K

Snd: e Ha%

Urd: LS s
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want_VV

E]

Eng: to want to sleep
Hin: 4T 9TgAT

Nep: g1 AT8q

Pes: wlsis dlulsa
Pnb: Ly Gl

Snd: Haew Hals

Urd: Lyly Lses

Lexical Paradigms

Paradigms for English

source |. ./src/english/ParadigmsEng.gf
Function | Type Explanation
Gender VP! -
human ende -
nonhuman ende -
Number VD! -
singular Numbe -
plural Number] -
npNumber @ -> Numbei| _ exctract the number of a noun phrase
mkN (flash : Str) -> N_ plural s, incl. flash-flashes, fly-flies
mkN (man,men : Str) -> u _ irreqular plural
mkN man,men,man's,men's : Str) -> u irregular genitives
mkN Eiendeﬂ > N-> E default nonhuman
mkN Str —>__N >N e.g. baby + boom
mkN2 -> g_ __ e.g. wife of (default prep. to)
mkN2 -> Preg -> N . e.g. access to
mkN3 -> [Preg -> Prepg -> M e.g. connection from x to y
wkPN Str —> _ -
mkA (happy : Str) -> [A _ regular adj, incl. happy-happier, rude-ruder
mkA (fat,fatter : Str) -> [A _ irreg. comparative
mkA (good,better,best,well : Str) -> [ completely irreg.
compoundA | |Al -> A force comparison with more/most
simpleA Al -> A _ force comparison with -er,-est
irregAdv Al -> Str -> adverb trreg, e.g. "fast”
mkA2 Al -> Prepg -> A absent from
mkAdv Str -> |Ad e.g. today
mkAdV Str -> |AdV] e.g. always
mkAdA Str -> |AdA e.g. quite
mkAdN Str -> |AdN e.g. approximately
mkPrep Str -> Pre e.g. ”in front of”
noPrep re _ no preposition
mkV (cry : Str) -> M _ reqular, incl. cry-cries, kiss-kisses etc
mkV (stop, stopped : Str) -> M _ reg. with consonant duplication
mkV (drink, drank, drunk : Str) -> M _. | ordinary irregular
mkV (go, goes, went, gone, going : Str) -> M | totally irregular
mkV str -> M -> fix compound, e.g. under+take
partV -> Str -> with particle, e.g. switch + on
reflV \Y reflexive e.g. behave oneself
mkV2 V] transitive, e.g. hit
mkV2 V] with preposiiton, e.g. believe in
mkV3 V] ditransitive, e.g. give, ,
mkV3 V] two prepositions, e.g. speak, with, about
mkVS M sentence-compl e.g. say (that S)
mkV2S e.g. tell (NP) (that S)
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mkVV -> VV] e.g. want (to VP)
ingVV -> VV - e.g. start (VPing)
mkV2V =S Preg -> Preg -> V2V e.g. want (noPrep NP) (to VP)
ingV2v -> Preg -> [Pred -> V2V e.g. prevent (noPrep NP) (from VP-ing)
mkVA . e.g. become (AP)
mkV2A V2A e.g. paint (NP) (AP)
mkVQ e.g. wonder (QS)
mkV2Q e.g. ask (NP) (QS)
Paradigms for Hindi/Urdu
source |. ./src/urdu/ParadigmsUrd.gf
Function Type Explanation
masculine ende -
feminine ende -
singular Number; -
plural Number; -
mkN str -> N Regular nouns e.g. laRka, gender is judged
_ _ from noun ending
mkN Str -> Gende] -> N _ nouns whose gender is irreqular e.g. aadmy
mkN (x1,_ _,x6 : Str) -> [Gende -> N worst case constructor
mkN2 N -> Prep -> Str -> N2; _ e.g. maN ky
mkN3 N -> Preg -> Str -> Str-> NJ e.g. faSlh - sE - ka
mkCmpdNoun Str -> N -> e.g. talab elm
mkPN Str -> P e.g. John
demoPN Str -> Str -> Str -> Quant |-
mkDet Str -> Str -> Str -> Str -> Numbel -> De -
mkIP (x1,x%2,x3:Str) -> Numbel -> [Gendel -> -
mkAdN Str —>m -
mkA str-> A _ e.g accha
mkA Str -> Str -> A9 e.g sE Xady krna
mkA2 Al -> str -> -
mkCompoundA | Str -> Str -léé e.g dra hwa
mkV Str -> regular verbs e.g. sona
mkV2 Str -> | e.g. pyna
mkV2 -> I\Q . e.g. pyna
mkV?2 -> str -> V9 e.g. bnd krna
dirV2 M -> V9 -
mkV3 V| -> Str -> Str -> V3; . e.g. bycna
mkV2V M -> Str -> Str -> Bool -> [V2V| e.g. eltja krna - sE - kw
dirdirV3 M->V3 -
compoundV Str -> M_—> M_ e.g. barX hwna
compoundV Str -> u—> M e.g. bnd krna
mkAdv Str -> [Ady e.g yhaN
mkAdv Str -> Str -> Ad -
mkPrep Str -> Str -> Pre e.g. ka - ky
mkIQuant Str -> [Quan -
mkCon j Str -> Con and (plural agreement)
mkConj Str -> Numbeir -> [Conj or (agrement number given as argument)
mkConj Str -> Str -> [Con both ... and (plural)
mkConj Str -> Str -> Numbey -> Con either ... or (agrement number given as argu-
ment)
mkConj Str -> [Con -
mkConj Str -> [Numbei -> [Conj -
mkConj Str -> Str -> Con -
mkConj Str -> Str -> Numbeil -> Con -
mk2Con j Str -> Str -> Numbei -> Con, -
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mkVS V| -> VS; e.g drna

mkVV ->VM_ -

mkAdA str -> JAdA| -

mkVQ M->Ng e.g. janna

Paradigms for Punjabi
source |. ./src/punjabi/ParadigmsPnb.gf

Function Type Explanation

masculine E%endeﬂ -

feminine ende -

singular Number; -

plural Number 3y -

mkN str -> N Regular nouns e.g. 'munda’, gender is judged

_ . from noun ending

mkN2 N -> Pred -> str -> n2; e.g. maN da

mkCmpdNoun | Str -> N -> -

mkPN Str -> PN e.g. John

mkPN Str -> [Gendel -> @ -

demoPN Str -> Str -> Str -> E)uanﬂ -

mkDet Str -> Str -> Str -> Str -> \Tumbeg -> @ -

mkIP (x1,x2,x3,x4:Str) -> Numbei -> [Gendern] —> -

mkAdN Str -> Ad -

mkA str-> | _ e.g. changa

mkA Str -> str -> [Ad -

mkV Str -> e.g. saona

mkV2 str -> V] e.g. khana

mkV2 M -> V2 _ -

mkV?2 M -> str -> V9 -

mkV3 V| -> Str -> Str -> V3; . e.g. vechna

mkV2V M -> Str -> Str -> Bool -> V2 e.g. mangna

compoundV Str -> \_/|_—> | e.g. bnd krna

compoundV Str -> ﬂ—> M -

mkAdv Str -> Ad e.g. aj

mkPrep Str -> Ereé e.g da

mkQuantl IProd -> Quanﬂ -

mkIQuant Str -> Str -> Str -> Str -> [[Quanf -

mkQuant1 IProd => [Quan! -

mkConj Str -> Con and (plural agreement)

mkConj Str -> Number -> [Conj or (agrement number given as argument)

mkConj Str -> Str -> [Conj . both ... and (plural)

mkConj Str -> Str -> Number -> [Conj either ... or (agrement number given as argu-
ment)

mkConj Str -> Con -

mkConj Str -> [Number -> [Con{ -

mkConj Str -> Str -> [Con -

mkConj Str -> Str -> Numbery -> Con -

mk2Con j Str -> Str -> Numbey -> [Con -

Paradigms for Persian

source |. ./src/persian/ParadigmsPes.gf

Function Type Explanation
animate Animacy -
inanimate Animacyf -
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singular Number; -
plural Number; -
mkNO1 Str -> |[Animacy] -> Nou -
mkNO2 Str -> Animacy] -> Nou -
mkN2 N -> Prepg -> Str -> N2; _ -
mkN3 N -> Pred -> Str -> Str-> Nj -
mkCmpdNounl | Str -> [N -> N -
mkCmpdNoun2 | N -> Str -> -
mkPN Str -> [Animacy -> PN -
personalPN Str -> Numbei] -> [PPersor] -> m -
demoPN Str -> Str -> Str -> Quant| -
mkDet Str -> Numbey -> Det -
mkDet Str -> Number -> [Bool —> De |-
mkIP (x1,x2,x3,x4:5tr) -> Numbey -> [Gended ->[[{ | -
mkAdN Str -> JAd -
mkA Str-> A _ -
mkA Str-> str -> Al -
mkA Str -> Str -> A -
mkV Str -> Str -> M -
haveVerb M B -
mkV_1 Str -> M -
mkV_2 Str -> V] -
mkV2 -> V9 . -
mkV2 -> Str -> [V _ -
mkV?2 -> Str -> Bool -> V9 -
mkv3 M -> str -> str -> v3; _ -
mkV2V M -> Str -> Str -> Bool -> V2V -
compoundV Str -> ﬂ_—> L -
compoundV Str -> ﬂ-> M -
mkAdv Str -> |Ad -
mkPrep Str -> ﬁ -
mkQuant Str -> Str -> E)uanﬂ -
mkConj Str -> [Con and (plural agreement)
mkConj Str -> Numbei -> [Conj or (agrement number given as argument)
mkConj Str -> Str -> Conj both ... and (plural)
mkCon j Str -> Str -> Numbey -> [Conj either ... or (agrement number given as argu-
_ ment)
mkConj Str -> [Con -
mkConj Str -> Numbei -> [Conj -
mkConj Str -> Str -> Conj -
mkCon j Str -> Str -> Numbei -> Con -
mk2Con j Str -> Str -> Number -> [Con -
mkVV M->VV -

Paradigms for Sindhi

source |. ./src/sindhi/ParadigmsSnd.gf
Function Type Explanation
masculine ende -
feminine ende -
singular Number; -
plural Number ; -
mkN2 N -> Prep -> Str -> N2; _ -
mkN3 N -> Pred -> Str -> Str-> NJ -
mkCmpdNoun | Str -> E_—> -
mkPN str -> PN _ -
mkPN Str -> [Gendel -> PN -
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demoPN Str -> Str -> Str -> Quant] -
mkDet Str -> Str -> Str -> Str -> Numbei -> @__‘ -
mkIP (x1,x2,x3,x4:5tr) -> Numbel -> Gended -> m -
mkAdN Str -> JAd -
mkA str-> [ . -
mkA Str -> Str -> [A9 -
mkV str —> M -
mkV2 str -> V9 -
mkV2 M -> V3 _ -
mkV?2 M -> str -> V9 -
mkV3 V| -> Str -> Str -> V3; . -
mkV2V -> Str -> str -> Bool -> V2 -
compoundV Str -> M -> ﬂ_‘ -
compoundV str ->V3I->M -
mkAdv -
mkPrep -
mkQuantil -
mkIQuant Str -> Str -> Str -> Str -> [Quant| -
mkQuanti rod =-> (Juan -
mkConj Str -> Con and (plural agreement)
mkConj Str -> Number -> [Conj or (agrement number given as argument)
mkConj Str -> Str -> [Conj __ . both ... and (plural)
mkConj Str -> Str -> Numbet -> [Conj either ... or (agrement number given as argu-
ment)

mkConj Str -> Con -
mkCon j Str -> Number -> [Conj -
mkConj Str -> Str -> Conj _ -
mkConj Str -> Str -> Numbey -> Con -
mk2Con j Str -> Str -> Number -> [Con -
mkVV M->MV -

Paradigms for Nepali

source |. ./src/nepali/ParadigmsNep.gf
Function Type Explanation
masculine ende -
feminine Gende -
singular Number -
plural Number -
human N'Typd -
profession | NType -
living NTypq _ -
regh Str ->N_ -
regN Str -> NPerson -> -
regh Str -> N'Typq -> — -
regN Str -> NTypd -> NPerson -> N -
mkNF str ->N -
mkNF Str -> [NPerson -> -
mkNF Str -> NTypd -> — -
mkNF Str -> NTypqd -> NPerson -> m -
mkNUC Str -> _ -
mkNUC Str -> N _ -
mkNUC str -> NTypd -> N_ _ -
mkNUC Str -> NTypd -> NPersod -> N -
mkNUC Str -> NTypd -> [Gendel -> -
mkN2 N -> Preg -> Str -> N . -
mkN2 N -> Pred -> str -> NTypd -> N9 -
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mkN2 => Pred -> Str -> NIypq -> NPersoq —> @ -

mkN2 -> |Preg -> Str -> N2; . -

mkN3 -> Pred -> Pred -> str-> N3 _ -

mkN3 -> Str-> NTypd -> NJ -

mkN3 -> Str-> N3 -

mkCmpdNoun -

mkPN -

mkPN NPersor -> PN -

mkPN NTypd -> NPerson -> @ -

demoPN Str -> Str -> Str -> [Duant -

mkDet (s1,s2:5tr) -> Numbel -

mkDet (s1,s82,s3,84:Str) -> -

mkIDetn (s1,s2:5tr) -> Numbel - -

mkIP (x1,%2,%3,x4:5tr) -> Number -> [ -

mkA str-> [ . -

mkA Str -> Str -> [AJ -

mkV Str -> M -

mkV?2 Str -> V9 -

mkV?2 M -> V3 _ -

mkV?2 M -> str -> V9 . -

mkV3 V| -> Str -> Str -> - -

mkV2V M -> Str -> Str -> % -> Va2V -

compoundV Str -> M -> ﬂ_‘ -

compoundV Str -> V3 -> M -

mkAdv Str -> JAd e.g. today

mkAdV Str -> AdV] e.g. always

mkAdA Str -> AdA e.g. quite

mkAdN Str -> AdN e.g. approzimately

mkPrep Str -> @ -

noPrep re -

—-mkQuant ror] -> Quant] -

mkQuant (s1,s2,s3,s4:Str) —> FQuanﬂ -

mkQuant (s1,s2:8tr) -> Quant -

mkConj Str -> Con and (plural agreement)

mkConj Str -> Number -> [Con{ or (agrement number given as argument)

mkConj Str -> Str -> [Con both ... and (plural)

mkConj Str -> Str -> Numbey -> [Con, either ... or (agrement number given as argu-
_ ment)

mkConj Str -> Con -

mkConj Str -> Number -> [Conj -

mkConj Str -> Str -> Conj -

mkConj Str -> Str -> Numbey -> Con -

mk2Conj Str -> Str -> Numbey -> Con -
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